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News

Multiplication Hits
the Speed Limit

A problem “around since antiquity” may have been

resolved by a new algorithm.

PAPER POSTED ONLINE in

March 2019 presents what

may be essentially the

fastest possible algorithm

for one of the oldest prob-
lems in mathematics: whole number
multiplication. The new algorithm,
which can multiply two n-digit num-
bers in approximately n(logn) steps,
breaks all previous records and reach-
es what mathematicians conjectured
decades ago should be the fundamen-
tal speed limit for any multiplication
procedure.

“This problem has been around
since antiquity,” said Joshua Cooper of
the University of South Carolina in Co-
lumbia. “It’s extraordinary to see the
state of the art reach what people be-
lieve is the truth” about how fast mul-
tiplication can be carried out.

The new algorithm outstrips other
algorithms only for extremely large
numbers, so for now its practical ap-
plications are limited. Its theoretical
implications, however, are vast. Multi-
plication lies at the core of nearly ev-
ery mathematical operation: its speed
is as central to arithmetical complex-
ity theory as the speed of light is to
physics, said Joris van der Hoeven of
the French National Center for Sci-
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David Harvey, above, demonstrating how standard multiplication is impractical when
multiplying astronomically large numbers together. Below, Joris van der Hoeven, who

worked with Harvey on the new algorithm to speed multiplication of such numbers.

entific Research in Paris, who created
the new algorithm along with David
Harvey of Australia’s University of
New South Wales in Sydney.

The new paperimmediately implies,
for example, that it is possible to calcu-
late the first n digits of the reciprocal
or square root of a number in approxi-
mately n(logn) steps, and the first n dig-
its of transcendental constants such as
n and e in roughly n(log’n) steps.
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“Now we know that all these algo-
rithms that depend on multiplica-
tion are the time complexity that we
thought they were,” Cooper said.

Too Many Logs

The standard multiplication algorithm
children learn in elementary school
takes approximately n*> steps, since
every digit of the first number must be
multiplied by every digit of the second
number. For millennia, no one knew
any significantly faster multiplication
procedure than this simple method.
In 1960, Andrey Kolmogorov—one of
the preeminent mathematicians of
the 20" century—challenged attend-
ees of a seminar at Moscow State Uni-
versity to prove there is no multiplica-
tion algorithm that runs in fewer than
about n? steps.

Anatoly Karatsuba, a 23-year-old
student attending the seminar, set
out to meet this challenge, but in-
stead proved the opposite. Karatsuba
came up with a clever but elemen-
tary way to combine the digits of two
numbers to compute their product in
approximately n'-*8 steps.

“It’s one of these incredible things
that seems so simple once you see it,
but no one saw it until Karatsuba did,”
Harvey said.

Other mathematicians quickly
found improvements to Karatsuba’s
algorithm. Then in 1971, Arnold
Schonhage and Volker Strassen made
another huge leap, devising an algo-
rithm whose running time is about
n(logn)(log(logn))—vastly more ef-
ficient than n'*® for large values of n.
A streamlined version of Schonhage
and Strassen’s algorithm lies at the
heart of the GNU Multiple Precision
Arithmetic Library used by all the
standard arithmetic software pack-
ages (although for numbers smaller
than a few hundred thousand digits,
the library uses other approaches, in-
cluding Karatsuba’s algorithm).

Schonhage and Strassen’s algo-
rithm, which laid the groundwork for
the new algorithm announced this
past March, leverages the fast Fourier
transform, a procedure for sampling
and reconstructing polynomials that
is used widely in signal processing. It
is easy to translate an integer multipli-
cation problem into a problem about
polynomials: Simply use the digits of

the two numbers as the coefficients of
two polynomials. So, for example, if you
want to multiply 635 and 258, you can
convert the two numbers into the poly-
nomials 6x*+3x+5 and 2x*+5x+8. Mul-
tiplying these two polynomials gives
12x"+36x°+73x°+49x+40, and if we plug
in the value x=10, the polynomial out-
puts the product of 635 and 258, namely
163,830.

If you calculate the polynomial
product by multiplying the two poly-
nomials term by term, as students
learn to do in algebra class, this trans-
lation doesn’t achieve any speedup
over the n* integer multiplication al-
gorithm. Yet there is a way to vastly
speed up polynomial multiplication.
Any polynomial whose highest expo-
nent is k is completely determined by
its values at k+1 different inputs. So in
the example above, the product poly-
nomial, whose highest exponent is 4,
is uniquely determined by its values at
any five inputs. That means that if we
choose our five favorite x values, eval-
uate 6x*+3x+5 and 2x>+5x+8 at those
five values and then multiply the cor-
responding outputs, those five mul-
tiplications already give us enough
information to reconstruct the prod-
uct polynomial (compared with nine
multiplications if we multiply the two
polynomials term by term).

What this analysis sweeps under the
rug, though, is the cost of first evaluat-
ing 6x’+3x+5 and 2x*+5x+8 at the five
inputs, and then reconstructing the
product polynomial at the end of the

I
No one thought it
would be possible

to bring the running
time of integer
multiplication down
to roughly n steps,
which would put
multiplication on

a par with addition.
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procedure. That’s where the fast Fou-
rier transform comes in: It provides
a speedy way to do such polynomial
evaluations and reconstructions, pro-
vided the five input values are chosen
carefully (specifically, they should be
the five complex numbers whose fifth
powers equal 1).

Using the fast Fourier transform,
combined with a more sophisticated
way of converting numbers into poly-
nomials than the naive digit-by-digit
translation above, Schoénhage and
Strassen were able to achieve their
n(logn)(log(logn)) algorithm. For more
than three decades after their work, no
one could come up with anything sig-
nificantly faster.

Yet computer scientists found the
n(logn)(log(logn)) running time dis-
turbingly inelegant. For that reason,
Schonhage and Strassen’s algorithm
didn’t seem like the final word on
the subject.

No one thought it would be pos-
sible to bring the running time of inte-
ger multiplication all the way down to
roughly n steps, which would put mul-
tiplication on a par with addition. How-
ever, Schonhage and Strassen, along
with many others, suspected the true
complexity of multiplication—the run-
ning time of the fastest possible algo-
rithm—should be n(logn), not n(logn)
(log(logn)).

“Everybody feels like multiplication
is more complicated than addition,”
said Martin Fiirer of Pennsylvania State
University in University Park. “But
everyone thought the log(logn) term
should not be necessary. From an aes-
thetic point of view, it doesn’t look nice.
Such a fundamental task as multiplica-
tion should have a nice complexity.”

The End of the Story

In 2007, Furer finally managed to
whittle down the log(logn) term in
Schonhage and Strassen’s algorithm
to something slightly smaller. Fiirer’s
algorithm was impractical for any mul-
tiplications people might want to carry
out in real life, but the theoretical ad-
vance electrified Harvey and van der
Hoeven. Over the past five years, they
have collaborated on a series of about
10 papers further improving Fiirer’s
bound. “There were twice as many
papers that never got written, and al-
gorithms that never saw the light of



day because they were superseded by
something else,” Harvey said.

Finally, in March 2019 the pair
figured out how to eliminate the
log(logn) term completely. Their new
algorithm uses a higher-dimensional
version of the fast Fourier transform,
combined with a method they devised
for increasing the number of sam-
pling points to take advantage of ad-
ditional speedups when the number
of sampling points is a power of two.
“It’s definitely the hardest paper I
ever worked on,” Harvey said.

The algorithm entails rounding
off the complex numbers involved in
the fast Fourier transform to achieve
a balance of speed and precision that
is “kind of amazing,” Cooper said.
“They’re performing exact integer
multiplication, but in the process
they’re passing into this other world
using complex numbers and poly-
nomials and doing an approximate
computation, then coming back and
getting an exact answer.”

The n(logn) bound means Harvey
and van der Hoeven’s algorithm is
faster than Schonhage and Strassen’s
algorithm, or Fiirer’s algorithm, or any
other known multiplication algorithm,
provided n is sufficiently large. For
now, “sufficiently large” means almost
unfathomably large: Harvey and van
der Hoeven’s algorithm doesn’t even
kick in until the number of bits in the
two numbers being multiplied is great-
er than 2 raised to the 1729'* power. (By
comparison, the number of particles in
the observable Universe is commonly
put at about 227°.)

Harvey and van der Hoeven made
no efforts to optimize their algo-
rithm. This was partly because they
were focused on the theoretical ad-
vance, and partly because they were
tickled when their back-of-the-en-
velope calculations led them to the
number 1729, which, in a famous
anecdote, the mathematician Srini-
vasa Ramanujan called a “very in-
teresting” number (because it is the
smallest number that can be written
as a sum of two cubes in two different
ways). “When I saw this, I burst out
laughing,” Harvey recalled.

Other researchers will likely find
ways to tweak Harvey and van der Ho-
even’s algorithm so it outperforms
other algorithms at smaller and smaller
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numbers. What they are unlikely to do,
many researchers agree, is come up
with any algorithm qualitatively faster
than n(logn). No one knows how to
prove this—as arule, establishing there
are no algorithms faster than some
bound is much harder than coming up
with a new fast algorithm.
Nevertheless, “It would really sur-
prise usifitis possible to do better than
n(logn),” van der Hoeven said. “We feel
that the story for integer multiplication
ends here.”
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Milestones

ACM
Recognizes
Distinguished
Members

ACM recently inducted 62
Distinguished Members for
their outstanding contributions
to the field.

The 2019 inductees are
long-standing ACM members
selected by their peers for a
range of accomplishments
that have contributed to
technologies that underpin how
we live, work, and play.

“Each year, it is our
honor to select a new class
of Distinguished Members,”
explains ACM president Cherri
M. Pancake. “In everything we
do, our overarching goal is to
build a community wherein
computing professionals can
grow professionally and, in
turn, contribute to the field
and the broader society. We
are delighted to recognize
these individuals for their
contributions to computing,
and we hope that the careers of
the 2019 ACM Distinguished
Members will continue
to prosper through their
participation with ACM.”

The 2019 ACM Distinguished
Members have made
contributions in a wide range
of technical areas, including
artificial intelligence, human-
computer interaction, computer
engineering, computer science
education, cybersecurity,
graphics, and networking.

The ACM Distinguished
Member program recognizes
up to 10% of ACM worldwide
membership based on
professional experience and
significant achievement in the
computing field. Candidates
must have at least 15 years
of professional experience
in computing, five years of
continuous professional
ACM membership, and
have achieved a significant
level of accomplishment or
made a significant impact in
computing, computer science,
and/or information technology.

Distinguished Members
serve as mentors and role
models, guiding technical
career development and
contributing to the field
beyond the norm.

The list of new Distinguished
Members can be viewed at
http://bit.ly/2CBLJDB.
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