
Arduino

Arduino

i

About the Tutorial

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and

software. It consists of a circuit board, which can be programed (referred to as

a microcontroller) and a ready-made software called Arduino IDE (Integrated

Development Environment), which is used to write and upload the computer code to the

physical board.

Arduino provides a standard form factor that breaks the functions of the micro-controller

into a more accessible package.

Audience

This tutorial is intended for enthusiastic students or hobbyists. With Arduino, one can get

to know the basics of micro-controllers and sensors very quickly and can start building

prototype with very little investment.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already familiar

with the basics of C and C++. If you are not well aware of these concepts, then we will

suggest you go through our short tutorials on C and C++. A basic understanding of

microcontrollers and electronics is also expected.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Arduino

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

ARDUINO – BASICS .. 1

 Arduino – Overview .. 2
Board Types ... 3

 Arduino – Board Description ... 6

 Arduino – Installation ... 9

 Arduino – Program Structure .. 17

 Arduino – Data Types .. 19
void .. 19
Boolean .. 19
Char ... 20
unsigned char .. 21
byte .. 21
int 21
Unsigned int .. 21
Word .. 21
Long ... 22
unsigned long .. 22
short .. 22
float ... 22
double .. 23

 Arduino – Variables & Constants .. 24
What is Variable Scope? .. 24

 Arduino – Operators ... 26
Arithmetic Operators... 26
Comparison Operators .. 27
Boolean Operators .. 29
Bitwise Operators .. 30
Compound Operators .. 31

 Arduino – Control Statements... 33
if statement .. 34
If …else statement .. 35
if…else if …else statement ... 37
Switch Case Statement .. 39
Conditional Operator ? : .. 41
Rules of Conditional Operator ... 41

 Arduino – Loops .. 42

Arduino

iii

while loop .. 42
do…while loop ... 43
for loop .. 44
Nested Loop .. 45
Infinite loop ... 45

 Arduino - Functions ... 47
Function Declaration ... 48

 Arduino – Strings .. 51
String Character Arrays .. 51
Manipulating String Arrays .. 52
Functions to Manipulate String Arrays .. 54
Array Bounds ... 58

 Arduino – String Object ... 59
What is an Object? .. 59
When to Use a String Object ... 61

 Arduino – Time ... 62
delay() function ... 62
delayMicroseconds() function ... 63
millis() function .. 63
micros() function ... 64

 Arduino – Arrays ... 66
Declaring Arrays .. 67
Examples Using Arrays .. 67
Arduino – Passing Arrays to Functions .. 70
Multidimensional Arrays ... 73

ARDUINO – FUNCTION LIBRARIES... 78

 Arduino – I/O Functions .. 79
Pins Configured as INPUT .. 79
Pull-up Resistors .. 79
Pins Configured as OUTPUT ... 80
pinMode() Function ... 80
digitalWrite() Function .. 81
analogRead() function .. 82

 Arduino – Advanced I/O Function ... 84
analogReference() Function .. 84

 Arduino – Character Functions .. 86
Examples .. 87

 Arduino – Math Library ... 93
Library Macros ... 93
Library Functions ... 95
Example ... 99

 Arduino – Trigonometric Functions ... 101

Arduino

iv

ARDUINO ─ ADVANCED .. 102

 Arduino – Due & Zero ... 103
Arduino Zero .. 104

 Arduino – Pulse Width Modulation ... 106
Basic Principle of PWM .. 106
analogWrite() Function.. 107

 Arduino – Random Numbers ... 109
randomSeed (seed) ... 109
random() ... 109
Bits ... 110
Bytes .. 110

 Arduino – Interrupts ... 112
Types of Interrupts .. 113

 Arduino – Communication .. 115
Parallel Communication .. 115
Serial Communication Modules .. 115
Types of Serial Communications ... 116
Arduino UART .. 117

 Arduino – Inter Integrated Circuit ... 119
Board I2C Pins .. 119
Arduino I2C .. 119
Master Transmitter / Slave Receiver ... 120
Master Receiver / Slave Transmitter ... 121

 Arduino – Serial Peripheral Interface .. 123
Board SPI Pins .. 123
SPI as MASTER ... 124
SPI as SLAVE ... 125

ARDUINO – PROJECTS ... 127

 Arduino – Blinking LED .. 128

 Arduino – Fading LED ... 132

 Arduino – Reading Analog Voltage .. 137

 Arduino – LED Bar Graph... 141

 Arduino – Keyboard Logout .. 145

 Arduino – Keyboard Message ... 151

 Arduino – Mouse Button Control .. 154

 Arduino – Keyboard Serial .. 158

Arduino

v

ARDUINO ─ SENSORS .. 161

 Arduino – Humidity Sensor ... 162

 Arduino – Temperature Sensor ... 168

 Arduino – Water Detector / Sensor ... 171

 Arduino – PIR Sensor .. 174

 Arduino – Ultrasonic Sensor .. 179

 Arduino – Connecting Switch .. 183

ARDUINO ─ MOTOR CONTROL ... 187

 Arduino – DC Motor .. 188
Motor Speed Control ... 190
Spin Direction Control ... 192

 Arduino – Servo Motor ... 196

 Arduino – Stepper Motor .. 201

ARDUINO AND SOUND .. 205

 Arduino – Tone Library ... 206

 Arduino – Wireless Communication .. 212

 Arduino – Network Communication .. 217

Arduino

1

Arduino – Basics

Arduino

2

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and

software. It consists of a circuit board, which can be programed (referred to as

a microcontroller) and a ready-made software called Arduino IDE (Integrated

Development Environment), which is used to write and upload the computer code to the

physical board.

The key features are:

 Arduino boards are able to read analog or digital input signals from different

sensors and turn it into an output such as activating a motor, turning LED on/off,

connect to the cloud and many other actions.

 You can control your board functions by sending a set of instructions to the

microcontroller on the board via Arduino IDE (referred to as uploading software).

 Unlike most previous programmable circuit boards, Arduino does not need an extra

piece of hardware (called a programmer) in order to load a new code onto the

board. You can simply use a USB cable.

 Additionally, the Arduino IDE uses a simplified version of C++, making it easier to

learn to program.

 Finally, Arduino provides a standard form factor that breaks the functions of the

micro-controller into a more accessible package.

 Arduino – Overview

Arduino

3

Board Types

Various kinds of Arduino boards are available depending on different microcontrollers used.

However, all Arduino boards have one thing in common: they are programed through the

Arduino IDE.

The differences are based on the number of inputs and outputs (the number of sensors,

LEDs, and buttons you can use on a single board), speed, operating voltage, form factor

etc. Some boards are designed to be embedded and have no programming interface

(hardware), which you would need to buy separately. Some can run directly from a 3.7V

battery, others need at least 5V.

Arduino

4

Here is a list of different Arduino boards available.

Arduino boards based on ATMEGA328 microcontroller

Board Name
Operating

Volt

Clock

Speed

Digital

i/o

Analog

Inputs
PWM UART

Programming

Interface

Arduino Uno

R3
5V 16MHz 14 6 6 1

USB via

ATMega16U2

Arduino Uno

R3 SMD
5V 16MHz 14 6 6 1

USB via

ATMega16U2

Red Board 5V 16MHz 14 6 6 1 USB via FTDI

Arduino Pro

3.3v/8 MHz
3.3V 8 MHz 14 6 6 1

FTDI-

Compatible

Header

Arduino Pro

5V/16MHz
5V 16MHz 14 6 6 1

FTDI-

Compatible

Header

Arduino mini

05
5V 16MHz 14 8 6 1

FTDI-

Compatible

Header

Arduino Pro

mini

3.3v/8mhz

3.3V 8MHz 14 8 6 1

FTDI-

Compatible

Header

Arduino Pro

mini

5v/16mhz

5V 16MHz 14 8 6 1

FTDI-

Compatible

Header

Arduino

Ethernet
5V 16MHz 14 6 6 1

FTDI-

Compatible

Header

Arduino Fio 3.3V 8MHz 14 8 6 1

FTDI-

Compatible

Header

LilyPad

Arduino 328

main board

3.3V 8MHz 14 6 6 1

FTDI-

Compatible

Header

LilyPad

Arduino

simply board

3.3V 8MHz 9 4 5 0

FTDI-

Compatible

Header

Arduino

5

Arduino boards based on ATMEGA32u4 microcontroller

Board Name
Operating

Volt

Clock

Speed

Digital

i/o

Analog

Inputs
PWM UART

Programming

Interface

Arduino

Leonardo
5V 16MHz 20 12 7 1 Native USB

Pro micro

5V/16MHz
5V 16MHz 14 6 6 1 Native USB

Pro micro

3.3V/8MHz
5V 16MHz 14 6 6 1 Native USB

LilyPad

Arduino USB
3.3V 8MHz 14 6 6 1 Native USB

Arduino boards based on ATMEGA2560 microcontroller

Board

Name

Operating

Volt

Clock

Speed

Digital

i/o

Analog

Inputs
PWM UART

Programming

Interface

Arduino

Mega 2560

R3

5V 16MHz 54 16 14 4
USB via

ATMega16U2

Mega Pro

3.3V
3.3V 8MHz 54 16 14 4

FTDI-

Compatible

Header

Mega Pro

5V
5V 16MHz 54 16 14 4

FTDI-

Compatible

Header

Mega Pro

Mini

3.3V

3.3V 8MHz 54 16 14 4

FTDI-

Compatible

Header

Arduino boards based on AT91SAM3X8E microcontroller

Board

Name

Operating

Volt

Clock

Speed

Digital

i/o

Analog

Inputs
PWM UART

Programming

Interface

Arduino

Due
3.3V 84MHz 54 12 12 4 USB native

Arduino

6

In this chapter, we will learn about the different components on the Arduino board. We

will study the Arduino UNO board because it is the most popular board in the Arduino

board family. In addition, it is the best board to get started with electronics and coding.

Some boards look a bit different from the one given below, but most Arduinos have

majority of these components in common.

Power USB

Arduino board can be powered by using the USB cable from your computer. All you need

to do is connect the USB cable to the USB connection (1).

 Arduino – Board Description

Arduino

7

Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it

to the Barrel Jack (2).

Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board

and stabilize the DC voltages used by the processor and other elements.

Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate

time? The answer is, by using the crystal oscillator. The number printed on top of the

Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

 Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can

reset the UNO board in two ways. First, by using the reset button (17) on the board.

Second, you can connect an external reset button to the Arduino pin labelled RESET (5).

 Pins (3.3, 5, GND, Vin)

 3.3V (6): Supply 3.3 output volt

 5V (7): Supply 5 output volt

 Most of the components used with Arduino board works fine with 3.3 volt

and 5 volt.

 GND (8)(Ground): There are several GND pins on the Arduino, any of which

can be used to ground your circuit.

 Vin (9): This pin also can be used to power the Arduino board from an

external power source, like AC mains power supply.

 Analog pins

The Arduino UNO board has five analog input pins A0 through A5. These pins can read the

signal from an analog sensor like the humidity sensor or temperature sensor and convert

it into a digital value that can be read by the microprocessor.

Arduino

8

 Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of

your board. The main IC (integrated circuit) on the Arduino is slightly different from board

to board. The microcontrollers are usually of the ATMEL Company. You must know what

IC your board has before loading up a new program from the Arduino IDE. This information

is available on the top of the IC. For more details about the IC construction and functions,

you can refer to the data sheet.

 ICSP pin

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of

MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral

Interface), which could be considered as an "expansion" of the output. Actually, you are

slaving the output device to the master of the SPI bus.

Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate that

your board is powered up correctly. If this light does not turn on, then there is something

wrong with the connection.

 TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in

two places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins

responsible for serial communication. Second, the TX and RX led (13). The TX led flashes

with different speed while sending the serial data. The speed of flashing depends on the

baud rate used by the board. RX flashes during the receiving process.

Digital I / O

The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse

Width Modulation) output. These pins can be configured to work as input digital pins to

read logic values (0 or 1) or as digital output pins to drive different modules like LEDs,

relays, etc. The pins labeled “~” can be used to generate PWM.

AREF

AREF stands for Analog Reference. It is sometimes, used to set an external reference

voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.

Arduino

9

After learning about the main parts of the Arduino UNO board, we are ready to learn how

to set up the Arduino IDE. Once we learn this, we will be ready to upload our program on

the Arduino board.

In this section, we will learn in easy steps, how to set up the Arduino IDE on our computer

and prepare the board to receive the program via USB cable.

Step 1: First you must have your Arduino board (you can choose your favorite board) and

a USB cable. In case you use Arduino UNO, Arduino Duemilanove, Nano, Arduino Mega

2560, or Diecimila, you will need a standard USB cable (A plug to B plug), the kind you

would connect to a USB printer as shown in the following image.

In case you use Arduino Nano, you will need an A to Mini-B cable instead as shown in the

following image.

Step 2: Download Arduino IDE Software.

You can get different versions of Arduino IDE from the Download page on the Arduino

Official website. You must select your software, which is compatible with your operating

system (Windows, IOS, or Linux). After your file download is complete, unzip the file.

 Arduino – Installation

mailto:https://www.arduino.cc/en/Main/Software?subject=Dwonlad%20page

Arduino

10

Step 3: Power up your board.

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power from

either, the USB connection to the computer or an external power supply. If you are using

an Arduino Diecimila, you have to make sure that the board is configured to draw power

from the USB connection. The power source is selected with a jumper, a small piece of

plastic that fits onto two of the three pins between the USB and power jacks. Check that

it is on the two pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable. The green power LED

(labeled PWR) should glow.

Step 4: Launch Arduino IDE.

After your Arduino IDE software is downloaded, you need to unzip the folder. Inside the

folder, you can find the application icon with an infinity label (application.exe). Double-

click the icon to start the IDE.

Arduino

11

Step 5: Open your first project.

Once the software starts, you have two options:

 Create a new project.

 Open an existing project example.

Arduino

12

To create a new project, select File --> New.

To open an existing project example, select File -> Example -> Basics -> Blink.

Arduino

13

Here, we are selecting just one of the examples with the name Blink. It turns the LED on

and off with some time delay. You can select any other example from the list.

Step 6: Select your Arduino board.

To avoid any error while uploading your program to the board, you must select the correct

Arduino board name, which matches with the board connected to your computer.

Go to Tools -> Board and select your board.

Arduino

14

Here, we have selected Arduino Uno board according to our tutorial, but you must select

the name matching the board that you are using.

Arduino

15

Step 7: Select your serial port.

Select the serial device of the Arduino board. Go to Tools -> Serial Port menu. This is

likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial

ports). To find out, you can disconnect your Arduino board and re-open the menu, the

entry that disappears should be of the Arduino board. Reconnect the board and select that

serial port.

Arduino

16

Step 8: Upload the program to your board.

Before explaining how we can upload our program to the board, we must demonstrate the

function of each symbol appearing in the Arduino IDE toolbar.

A- Used to check if there is any compilation error.

B- Used to upload a program to the Arduino board.

C- Shortcut used to create a new sketch.

D- Used to directly open one of the example sketch.

E- Used to save your sketch.

F- Serial monitor used to receive serial data from the board and send the serial data

to the board.

Now, simply click the "Upload" button in the environment. Wait a few seconds; you will

see the RX and TX LEDs on the board, flashing. If the upload is successful, the message

"Done uploading" will appear in the status bar.

Note: If you have an Arduino Mini, NG, or other board, you need to press the reset button

physically on the board, immediately before clicking the upload button on the Arduino

Software.

Arduino

17

In this chapter, we will study in depth, the Arduino program structure and we will learn

more new terminologies used in the Arduino world. The Arduino software is open-source.

The source code for the Java environment is released under the GPL and the C/C++

microcontroller libraries are under the LGPL.

Sketch: The first new terminology is the Arduino program called “sketch”.

Structure

Arduino programs can be divided in three main parts: Structure, Values (variables and

constants), and Functions. In this tutorial, we will learn about the Arduino software

program, step by step, and how we can write the program without any syntax or

compilation error.

Let us start with the Structure. Software structure consist of two main functions:

 Setup() function

 Loop() function

 Arduino – Program Structure

Arduino

18

Void setup ()

{

}

 PURPOSE: The setup() function is called when a sketch starts. Use it to initialize

the variables, pin modes, start using libraries, etc. The setup function will only run

once, after each power up or reset of the Arduino board.

 INPUT: -

 OUTPUT: -

 RETURN: -

Void Loop ()

{

}

 PURPOSE: After creating a setup() function, which initializes and sets the initial

values, the loop() function does precisely what its name suggests, and loops

consecutively, allowing your program to change and respond. Use it to actively

control the Arduino board.

 INPUT: -

 OUTPUT: -

 RETURN: -

Arduino

19

Data types in C refers to an extensive system used for declaring variables or functions of

different types. The type of a variable determines how much space it occupies in the

storage and how the bit pattern stored is interpreted.

The following table provides all the data types that you will use during Arduino

programming.

void Boolean char
Unsigned

char
byte int Unsigned int word

long
Unsigned

long
short float double array

String-char

array
String-object

void

The void keyword is used only in function declarations. It indicates that the function is

expected to return no information to the function from which it was called.

Example

Void Loop ()

{

 // rest of the code

}

Boolean

A Boolean holds one of two values, true or false. Each Boolean variable occupies one byte

of memory.

Example

boolean val = false ; // declaration of variable with type boolean and initialize

it with false

boolean state = true ; // declaration of variable with type boolean and

initialize it with false

 Arduino – Data Types

Arduino

20

Char

A data type that takes up one byte of memory that stores a character value. Character

literals are written in single quotes like this: 'A' and for multiple characters, strings use

double quotes: "ABC".

However, characters are stored as numbers. You can see the specific encoding in the ASCII

chart. This means that it is possible to do arithmetic operations on characters, in which

the ASCII value of the character is used. For example, 'A' + 1 has the value 66, since the

ASCII value of the capital letter A is 65.

Example

Char chr_a = ‘a’ ;//declaration of variable with type char and initialize it

with character a

Char chr_c = 97 ;//declaration of variable with type char and initialize it

with character 97

ASCII Char Table

https://www.arduino.cc/en/Reference/ASCIIchart
https://www.arduino.cc/en/Reference/ASCIIchart

Arduino

21

unsigned char

Unsigned char is an unsigned data type that occupies one byte of memory. The unsigned

char data type encodes numbers from 0 to 255.

Example

Unsigned Char chr_y = 121 ; // declaration of variable with type Unsigned

char and initialize it with character y

byte

A byte stores an 8-bit unsigned number, from 0 to 255.

Example

byte m = 25 ;//declaration of variable with type byte and initialize it with

25

int

Integers are the primary data-type for number storage. int stores a 16-bit (2-byte) value.

This yields a range of -32,768 to 32,767 (minimum value of -2^15 and a maximum value

of (2^15) - 1).

The int size varies from board to board. On the Arduino Due, for example, an int stores a

32-bit (4-byte) value. This yields a range of -2,147,483,648 to 2,147,483,647 (minimum

value of -2^31 and a maximum value of (2^31) - 1).

Example

int counter = 32 ;// declaration of variable with type int and initialize it with

32

Unsigned int

Unsigned ints (unsigned integers) are the same as int in the way that they store a 2 byte

value. Instead of storing negative numbers, however, they only store positive values,

yielding a useful range of 0 to 65,535 (2^16) - 1). The Due stores a 4 byte (32-bit) value,

ranging from 0 to 4,294,967,295 (2^32 - 1).

Example

Unsigned int counter= 60 ; // declaration of variable with type unsigned int and

initialize it with 60

Word

On the Uno and other ATMEGA based boards, a word stores a 16-bit unsigned number. On

the Due and Zero, it stores a 32-bit unsigned number.

Arduino

22

Example

word w = 1000 ;//declaration of variable with type word and initialize it with

1000

Long

Long variables are extended size variables for number storage, and store 32 bits (4 bytes),

from 2,147,483,648 to 2,147,483,647.

Example

Long velocity= 102346 ;//declaration of variable with type Long and initialize

it with 102346

unsigned long

Unsigned long variables are extended size variables for number storage and store 32 bits

(4 bytes). Unlike standard longs, unsigned longs will not store negative numbers, making

their range from 0 to 4,294,967,295 (2^32 - 1).

Unsigned Long velocity = 101006 ;// declaration of variable with type Unsigned

Long and initialize it with 101006

short

A short is a 16-bit data-type. On all Arduinos (ATMega and ARM based), a short stores a

16-bit (2-byte) value. This yields a range of -32,768 to 32,767 (minimum value of -2^15

and a maximum value of (2^15) - 1).

short val= 13 ;//declaration of variable with type short and initialize it with

13

float

Data type for floating-point number is a number that has a decimal point. Floating-point

numbers are often used to approximate the analog and continuous values because they

have greater resolution than integers.

Floating-point numbers can be as large as 3.4028235E+38 and as low as 3.4028235E+38.

They are stored as 32 bits (4 bytes) of information.

float num = 1.352;//declaration of variable with type float and initialize it

with 1.352

Arduino

23

double

On the Uno and other ATMEGA based boards, Double precision floating-point number

occupies four bytes. That is, the double implementation is exactly the same as the float,

with no gain in precision. On the Arduino Due, doubles have 8-byte (64 bit) precision.

double num = 45.352 ;// declaration of variable with type double and initialize

it with 45.352

Arduino

24

Before we start explaining the variable types, a very important subject we need to make

sure, you fully understand is called the variable scope.

What is Variable Scope?

Variables in C programming language, which Arduino uses, have a property called scope.

A scope is a region of the program and there are three places where variables can be

declared. They are:

 Inside a function or a block, which is called local variables.

 In the definition of function parameters, which is called formal parameters.

 Outside of all functions, which is called global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used

only by the statements that are inside that function or block of code. Local variables are

not known to function outside their own. Following is the example using local variables:

Void setup ()

{

}

Void loop ()

{

 int x , y ;

 int z ; Local variable declaration

 x= 0;

 y=0; actual initialization

 z=10;

}

Global Variables

Global variables are defined outside of all the functions, usually at the top of the program.

The global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available

for use throughout your entire program after its declaration.

 Arduino – Variables & Constants

Arduino

25

The following example uses global and local variables:

Int T , S ;

float c =0 ; Global variable declaration

Void setup ()

{

}

Void loop ()

{

 int x , y ;

 int z ; Local variable declaration

 x= 0;

 y=0; actual initialization

 z=10;

}

Arduino

26

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of

operators:

 Arithmetic Operators

 Comparison Operators

 Boolean Operators

 Bitwise Operators

 Compound Operators

Arithmetic Operators

Assume variable A holds 10 and variable B holds 20 then -

Example

void loop ()

{

 int a=9,b=4,c;

 c=a+b;

 c=a-b;

 Arduino – Operators

Operator

name

Operator

simple
Description Example

assignment

operator
=

Stores the value to the right of the

equal sign in the variable to the left of

the equal sign.

A=B

addition + Adds two operands A + B will give 30

subtraction -
Subtracts second operand from the

first
A - B will give -10

multiplication * Multiply both operands A * B will give 200

division / Divide numerator by denominator B / A will give 2

modulo %
Modulus Operator and remainder of

after an integer division
B % A will give 0

Arduino

27

 c=a*b;

 c=a/b;

 c=a%b;

}

Result

a+b=13

a-b=5

a*b=36

a/b=2

Remainder when a divided by b=1

Comparison Operators

Assume variable A holds 10 and variable B holds 20 then -

Operator

name

Operator

simple
Description Example

equal to = =

Checks if the value of two operands

is equal or not, if yes then condition

becomes true.

(A == B) is not

true

not equal to ! =

Checks if the value of two operands

is equal or not, if values are not

equal then condition becomes true.

(A != B) is true

less than <

Checks if the value of left operand

is less than the value of right

operand, if yes then condition

becomes true.

(A < B) is true

greater than >

Checks if the value of left operand

is greater than the value of right

operand, if yes then condition

becomes true.

(A > B) is not true

less than or

equal to
< =

Checks if the value of left operand

is less than or equal to the value of

right operand, if yes then condition

becomes true.

(A <= B) is true

greater than

or equal to
> =

Checks if the value of left operand

is greater than or equal to the value

of right operand, if yes then

condition becomes true.

(A >= B) is not

true

Arduino

28

Example

void loop ()

{ int a=9,b=4

 bool c = false;

 if(a==b)

 c=true;

 else

 c=false;

 if(a!=b)

 c=true;

 else

 c=false;

 if(a<b)

 c=true;

 else

 c=false;

 if(a>b)

 c=true;

 else

 c=false;

if(a<=b)

 c=true;

 else

 c=false;

if(a>=b)

 c=true;

 else

 c=false;

}

Arduino

29

Result

c=false
c=true

c= false
c=true

c= false

c= false

Boolean Operators

Assume variable A holds 10 and variable B holds 20 then -

Example

void loop ()

{

 int a=9,b=4

 bool c = false;

 if((a>b)&& (b<a))

 c=true;

 else

 c=false;

 if((a==b)|| (b<a))

 c=true;

 else

 c=false;

Operator

name

Operator

simple
Description Example

and &&

Called Logical AND operator. If both

the operands are non-zero then then

condition becomes true.

(A && B) is true

or ||

Called Logical OR Operator. If any of

the two operands is non-zero then

then condition becomes true.

(A || B) is true

not !

Called Logical NOT Operator. Use to

reverses the logical state of its

operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is false

Arduino

30

 if(!(a==b)&& (b<a))

 c=true;

 else

 c=false;

}

Result

c=true

c=true

c= true

Bitwise Operators

Assume variable A holds 10 and variable B holds 20 then -

Operator

name

Operator

simple
Description Example

and &
Binary AND Operator copies a bit to

the result if it exists in both operands.

(A & B) will give 12

which is 0000

1100

or |
Binary OR Operator copies a bit if it

exists in either operand.

(A | B) will give 61

which is 0011

1101

xor ^
Binary XOR Operator copies the bit if

it is set in one operand but not both.

(A ^ B) will give

49 which is 0011

0001

not ~

Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

(~A) will give -60

which is 1100

0011

shift left <<

Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give

240 which is 1111

0000

shift right >>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15

which is 0000

1111

Arduino

31

Example

void loop ()

{

 int a=10,b=20

 int c = 0;

 c= a & b ;

 c= a | b ;

 c= a ^ b ;

 c= a ~ b ;

 c= a << b ;

 c= a >> b ; }

Result

c=12

c=61

c= 49

c=-60

c=240

c=15

Compound Operators

Assume variable A holds 10 and variable B holds 20 then -

Operator

name

Operator

simple
Description Example

increment ++
Increment operator, increases

integer value by one
A++ will give 11

decrement --
Decrement operator, decreases

integer value by one
A-- will give 9

compound

addition
+=

Add AND assignment operator. It

adds right operand to the left operand

and assign the result to left operand

B += A is

equivalent to B =

B+ A

compound

subtraction
- =

Subtract AND assignment operator.

It subtracts right operand from the

left operand and assign the result to

left operand

B -= A is

equivalent to B =

B - A

Arduino

32

Example

void loop ()

{

 int a=10,b=20

 int c = 0;

 a++;

 a--;

 b+=a;

 b-=a;

 b*=a;

 b/=a;

 a%=b;

 a|=b;

 a&=b;

}

Result

a=11
a=9
b=30
b=10
b=200
b=2
a=0
a=61
a=12

compound

multiplication
*=

Multiply AND assignment operator. It

multiplies right operand with the left

operand and assign the result to left

operand

B*= A is

equivalent to B =

B* A

compound

division
/=

Divide AND assignment operator. It

divides left operand with the right

operand and assign the result to left

operand

B /= A is

equivalent to B =

B / A

compound

modulo
%=

Modulus AND assignment operator. It

takes modulus using two operands

and assign the result to left operand

B %= A is

equivalent to B =

B % A

compound

bitwise or
|=

bitwise inclusive OR and assignment

operator

A |= 2 is same as

A = A | 2

compound

bitwise and
&= Bitwise AND assignment operator

A &= 2 is same as

A = A & 2

Arduino

33

Decision making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program. It should be along with a statement or

statements to be executed if the condition is determined to be true, and optionally, other

statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages –

Control Statements are elements in Source Code that control the flow of program

execution. They are:

 If statement

 If …else statement

 If…else if …else statement

 switch case statement

 Conditional Operator ? :

 Arduino – Control Statements

http://cplus.about.com/od/glossary/g/glosource.htm

Arduino

34

if statement

It takes an expression in parenthesis and a statement or block of statements. If the

expression is true then the statement or block of statements gets executed otherwise

these statements are skipped.

Different forms of if statement

Form 1

if (expression)

 statement;

You can use the if statement without braces { } if you have one statement.

Form 2

if (expression)

 {

 Block of statements;

 }

if Statement – Execution Sequence

Arduino

35

Example

/* Global variable definition */

int A = 5 ;

int B= 9 ;

Void setup ()

{

}

Void loop ()

{

/* check the boolean condition */

 if (A > B) /* if condition is true then execute the following statement*/

 A++;

/* check the boolean condition */

 If ((A>B) && (B!=0)) /* if condition is true then execute the following

statement*/

 { A+=B;

 B--;

 }

}

If …else statement

An if statement can be followed by an optional else statement, which executes when the

expression is false.

if … else Statement Syntax

if (expression)

 {

 Block of statements;

 }

else

 {

 Block of statements;

 }

Arduino

36

if…else Statement – Execution Sequence

Example

/* Global variable definition */

int A = 5 ;

int B= 9 ;

Void setup ()

{

}

Void loop ()

{

 /* check the boolean condition */

 if (A > B) /* if condition is true then execute the following statement*/

 {

 A++;

 }

 else

 {

 B -= A;

 }

}

Arduino

37

if…else if …else statement

The if statement can be followed by an optional else if...else statement, which is very

useful to test various conditions using single if...else if statement.

When using if...else if…else statements, keep in mind −

 An if can have zero or one else statement and it must come after any else if's.

 An if can have zero to many else if statements and they must come before the

else.

 Once an else if succeeds, none of the remaining else if or else statements will be

tested.

if … else if …else Statements Syntax

if (expression_1)

 {

 Block of statements;

 }

else if(expression_2)

 {

 Block of statements;

 }

 .

 .

 .

else

 {

 Block of statements;

 }

Arduino

38

if … else if … else Statement Execution Sequence

Example

/* Global variable definition */

int A = 5 ;

int B= 9 ;

int c=15;

Void setup ()

{

}

Void loop ()

{

 /* check the boolean condition */

 if (A > B) /* if condition is true then execute the following statement*/

Arduino

39

 {

 A++;

 }

 /* check the boolean condition */

 else if ((A==B)||(B < c)) /* if condition is true then execute the

following statement*/

 {

 C =B* A;

 }

 else

 c++;

}

Switch Case Statement

Similar to the if statements, switch...case controls the flow of programs by allowing the

programmers to specify different codes that should be executed in various conditions. In

particular, a switch statement compares the value of a variable to the values specified in

the case statements. When a case statement is found whose value matches that of the

variable, the code in that case statement is run.

The break keyword makes the switch statement exit, and is typically used at the end of

each case. Without a break statement, the switch statement will continue executing the

following expressions ("falling-through") until a break, or the end of the switch statement

is reached.

Switch Case Statement Syntax

switch (variable)

{

 case label:

 // statements

 break;

 }

 case label:

 {

 // statements

 break;

 }

 default:

 {

 // statements

 break;

Arduino

40

 }

}

Switch Case Statement Execution Sequence

Example
Here is a simple example with switch. Suppose we have a variable phase with only 3

different states (0, 1, or 2) and a corresponding function (event) for each of these states.

This is how we could switch the code to the appropriate routine:

 switch (phase)

{

 case 0: Lo(); break;

 case 1: Mid(); break;

 case 2: Hi(); break;

 default: Message("Invalid state!");

Arduino

41

}

Conditional Operator ? :

The conditional operator ? : is the only ternary operator in C.

 ? : conditional operator Syntax

expression1 ? expression2 : expression3

Expression1 is evaluated first. If its value is true, then expression2 is evaluated and

expression3 is ignored. If expression1 is evaluated as false, then expression3 evaluates

and expression2 is ignored. The result will be a value of either expression2 or expression3

depending upon which of them evaluates as True.

Conditional operator associates from right to left.

Example

/* Find max(a, b): */

max = (a > b) ? a : b;

/* Convert small letter to capital: */

/* (no parentheses are actually necessary) */

c = (c >= 'a' && c <= 'z') ? (c - 32) : c;

Rules of Conditional Operator

 expression1 must be a scalar expression; expression2 and expression3 must obey

one of the following rules:

 Both expressions have to be of arithmetic type.

 expression2 and expression3 are subjected to usual arithmetic conversions, which

determines the resulting type.

Both expressions have to be of void type. The resulting type is void.

Arduino

42

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages –

C programming language provides the following types of loops to handle looping

requirements.

 while loop

 do…while loop

 for loop

 nested loop

 infinite loop

while loop

while loops will loop continuously, and infinitely, until the expression inside the

parenthesis, () becomes false. Something must change the tested variable, or the while

loop will never exit.

 Arduino – Loops

Arduino

43

while loop Syntax

while(expression)

 {

 Block of statements;

 }

while loop Execution Sequence

do…while loop

The do…while loop is similar to the while loop. In the while loop, the loop-continuation

condition is tested at the beginning of the loop before performed the body of the loop. The

do…while statement tests the loop-continuation condition after performed the loop body.

Therefore, the loop body will be executed at least once.

When a do…while terminates, execution continues with the statement after the while

clause. It is not necessary to use braces in the do…while statement if there is only one

statement in the body. However, the braces are usually included to avoid confusion

between the while and do…while statements.

 do…while loop Syntax

do{

Block of statements;

} while (expression);

Arduino

44

for loop

A for loop executes statements a predetermined number of times. The control expression

for the loop is initialized, tested and manipulated entirely within the for loop parentheses.

It is easy to debug the looping behavior of the structure as it is independent of the activity

inside the loop.

Each for loop has up to three expressions, which determine its operation. The following

example shows general for loop syntax. Notice that the three expressions in the for loop

argument parentheses are separated with semicolons.

for loop Syntax

for (initialize; control; increment or decrement)

{

// statement block

}

Example

for(counter=2;counter <=9;counter++)

{

 //statements block will executed 10 times

}

for loop Execution Sequence

Arduino

45

Nested Loop

C language allows you to use one loop inside another loop. The following example

illustrates the concept.

nested loop Syntax

for (initialize ;control; increment or decrement)

 {

 // statement block

 for (initialize ;control; increment or decrement)

 {

 // statement block

 }

 }

Example

for(counter=0;counter<=9;counter++)

{

 //statements block will executed 10 times

 for(i=0;i<=99;i++)

 {

 //statements block will executed 100 times

 }

}

Infinite loop

It is the loop having no terminating condition, so the loop becomes infinite.

infinite loop Syntax

1. Using for loop

for (;;)

 {

 // statement block

 }

https://en.wikipedia.org/wiki/Control_flow#Loops

Arduino

46

2. Using while loop

while(1)

 {

 // statement block

 }

3. Using do…while loop

do{

 Block of statements;

 } while(1);

Arduino

47

Functions allow structuring the programs in segments of code to perform individual tasks.

The typical case for creating a function is when one needs to perform the same action

multiple times in a program.

Standardizing code fragments into functions has several advantages:

 Functions help the programmer stay organized. Often this helps to conceptualize

the program.

 Functions codify one action in one place so that the function only has to be thought

about and debugged once.

 This also reduces chances for errors in modification, if the code needs to be

changed.

 Functions make the whole sketch smaller and more compact because sections of

code are reused many times.

 They make it easier to reuse code in other programs by making it modular, and

using functions often makes the code more readable.

There are two required functions in an Arduino sketch or a program i.e. setup () and loop().

Other functions must be created outside the brackets of these two functions.

The most common syntax to define a function is:

 Arduino - Functions

Arduino

48

Function Declaration

A function is declared outside any other functions, above or below the loop function.

We can declare the function in two different ways -

1. The first way is just writing the part of the function called a function prototype above

the loop function, which consists of:

 Function return type

 Function name

 Function argument type, no need to write the argument name

Function prototype must be followed by a semicolon (;).

The following example shows the demonstration of the function declaration using the first

method.

Example

int sum_func (int x, int y) // function declaration

{

 int z=0;

 z= x+y ;

 return z; // return the value

}

void setup ()

Arduino

49

{

 Statements // group of statements

}

Void loop ()

{

 int result =0 ;

 result = Sum_func (5,6) ; // function call

}

2. The second part, which is called the function definition or declaration, must be declared

below the loop function, which consists of -

 Function return type

 Function name

 Function argument type, here you must add the argument name

 The function body (statements inside the function executing when the function is
called)

The following example demonstrates the declaration of function using the second method.

Example

int sum_func (int , int) ; // function prototype

void setup ()

{

 Statements // group of statements

}

Void loop ()

{

 int result =0 ;

 result = Sum_func (5,6) ; // function call

}

int sum_func (int x, int y) // function declaration

{

 int z=0;

 z= x+y ;

 return z; // return the value

}

Arduino

50

The second method just declares the function above the loop function.

Arduino

51

Strings are used to store text. They can be used to display text on an LCD or in the Arduino

IDE Serial Monitor window. Strings are also useful for storing the user input. For example,

the characters that a user types on a keypad connected to the Arduino.

There are two types of strings in Arduino programming:

 Arrays of characters, which are the same as the strings used in C programming.

 The Arduino String, which lets us use a string object in a sketch.

In this chapter, we will learn Strings, objects and the use of strings in Arduino sketches.

By the end of the chapter, you will learn which type of string to use in a sketch.

String Character Arrays

The first type of string that we will learn is the string that is a series of characters of the

type char. In the previous chapter, we learned what an array is; a consecutive series of

the same type of variable stored in memory. A string is an array of char variables.

A string is a special array that has one extra element at the end of the string, which always

has the value of 0 (zero). This is known as a "null terminated string".

String Character Array Example

This example will show how to make a string and print it to the serial monitor window.

Example

void setup()

{

 char my_str[6]; // an array big enough for a 5 character string

 Serial.begin(9600);

 my_str[0] = 'H'; // the string consists of 5 characters

 my_str[1] = 'e';

 my_str[2] = 'l';

 my_str[3] = 'l';

 my_str[4] = 'o';

 my_str[5] = 0; // 6th array element is a null terminator

 Serial.println(my_str);

}

void loop()

{ }

 Arduino – Strings

Arduino

52

The following example shows what a string is made up of; a character array with printable

characters and 0 as the last element of the array to show that this is where the string

ends. The string can be printed out to the Arduino IDE Serial Monitor window by using

Serial.println() and passing the name of the string.

This same example can be written in a more convenient way as shown below:

Example

void setup()

 {

 char my_str[] = "Hello";

 Serial.begin(9600);

 Serial.println(my_str);

}

void loop()

 {

 }

In this sketch, the compiler calculates the size of the string array and also automatically

null terminates the string with a zero. An array that is six elements long and consists of

five characters followed by a zero is created exactly the same way as in the previous

sketch.

Manipulating String Arrays

We can alter a string array within a sketch as shown in the following sketch.

Example

void setup()

 {

 char like[] = "I like coffee and cake"; // create a string

 Serial.begin(9600);

// (1) print the string

 Serial.println(like);

// (2) delete part of the string

 like[13] = 0;

 Serial.println(like);

// (3) substitute a word into the string

 like[13] = ' '; // replace the null terminator with a space

 like[18] = 't'; // insert the new word

 like[19] = 'e';

 like[20] = 'a';

Arduino

53

 like[21] = 0; // terminate the string

 Serial.println(like);

}

void loop()

 {

}

Result

I like coffee and cake

I like coffee

I like coffee and tea

The sketch works in the following way.

(1) Creating and Printing the String

In the sketch given above, a new string is created and then printed for display in the Serial

Monitor window.

(2) Shortening the String

The string is shortened by replacing the 14th character in the string with a null terminating

zero (2). This is element number 13 in the string array counting from 0.

When the string is printed, all the characters are printed up to the new null terminating

zero. The other characters do not disappear; they still exist in the memory and the string

array is still the same size. The only difference is that any function that works with strings

will only see the string up to the first null terminator.

(3) Changing a Word in the String

Finally, the sketch replaces the word "cake" with "tea" (3). It first has to replace the null

terminator at like[13] with a space so that the string is restored to the originally created

format.

New characters overwrite "cak" of the word "cake" with the word "tea". This is done by

overwriting individual characters. The 'e' of "cake" is replaced with a new null terminating

character. The result is that the string is actually terminated with two null characters, the

original one at the end of the string and the new one that replaces the 'e' in "cake". This

makes no difference when the new string is printed because the function that prints the

string stops printing the string characters when it encounters the first null terminator.

Arduino

54

Functions to Manipulate String Arrays

The previous sketch manipulated the string in a manual way by accessing individual

characters in the string. To make it easier to manipulate string arrays, you can write your

own functions to do so, or use some of the string functions from the C language library.

Functions Description

String()

The String class, part of the core as of version 0019, allows you

to use and manipulate strings of text in more complex ways

than character arrays do. You can concatenate Strings, append

to them, search for and replace substrings, and more. It takes

more memory than a simple character array, but it is also more

useful.

For reference, character arrays are referred to as strings with

a small ‘s’, and instances of the String class are referred to as

Strings with a capital S. Note that constant strings, specified in

"double quotes" are treated as char arrays, not instances of the

String class

charAt() Access a particular character of the String.

compareTo()

Compares two Strings, testing whether one comes before or

after the other, or whether they are equal. The strings are

compared character by character, using the ASCII values of the

characters. That means, for example, 'a' comes before 'b' but

after 'A'. Numbers come before letters.

concat() Appends the parameter to a String.

c_str()

Converts the contents of a string as a C-style, null-terminated

string. Note that this gives direct access to the internal String

buffer and should be used with care. In particular, you should

never modify the string through the pointer returned. When

you modify the String object, or when it is destroyed, any

pointer previously returned by c_str() becomes invalid and

should not be used any longer.

endsWith()
Tests whether or not a String ends with the characters of

another String.

equals()

Compares two strings for equality. The comparison is case-

sensitive, meaning the String "hello" is not equal to the String

"HELLO".

equalsIgnoreCase()

Compares two strings for equality. The comparison is not case-

sensitive, meaning the String("hello") is equal to the

String("HELLO").

getBytes() Copies the string's characters to the supplied buffer.

indexOf() Locates a character or String within another String. By default,

it searches from the beginning of the String, but can also start

Arduino

55

from a given index, allowing to locate all instances of the

character or String.

lastIndexOf()

Locates a character or String within another String. By default,

it searches from the end of the String, but can also work

backwards from a given index, allowing to locate all instances

of the character or String.

length()
Returns the length of the String, in characters. (Note that this

does not include a trailing null character.)

remove()

Modify in place, a string removing chars from the provided

index to the end of the string or from the provided index to

index plus count.

replace()

The String replace() function allows you to replace all instances

of a given character with another character. You can also use

replace to replace substrings of a string with a different

substring.

reserve()
The String reserve() function allows you to allocate a buffer in

memory for manipulating strings.

setCharAt()
Sets a character of the String. Has no effect on indices outside

the existing length of the String.

startsWith()
Tests whether or not a String starts with the characters of

another String.

toCharArray() Copies the string's characters to the supplied buffer.

substring()

Get a substring of a String. The starting index is inclusive (the

corresponding character is included in the substring), but the

optional ending index is exclusive (the corresponding character

is not included in the substring). If the ending index is omitted,

the substring continues to the end of the String.

toInt()

Converts a valid String to an integer. The input string should

start with an integer number. If the string contains non-integer

numbers, the function will stop performing the conversion.

toFloat()

Converts a valid String to a float. The input string should start

with a digit. If the string contains non-digit characters, the

function will stop performing the conversion. For example, the

strings "123.45", "123", and "123fish" are converted to 123.45,

123.00, and 123.00 respectively. Note that "123.456" is

approximated with 123.46. Note too that floats have only 6-7

decimal digits of precision and that longer strings might be

truncated.

toLowerCase()
Get a lower-case version of a String. As of 1.0, toLowerCase()

modifies the string in place rather than returning a new.

toUpperCase()
Get an upper-case version of a String. As of 1.0, toUpperCase()

modifies the string in place rather than returning a new one.

Arduino

56

trim()

Get a version of the String with any leading and trailing

whitespace removed. As of 1.0, trim() modifies the string in

place rather than returning a new one.

The next sketch uses some C string functions.

Example

void setup()

{

 char str[] = "This is my string"; // create a string

 char out_str[40]; // output from string functions placed here

 int num; // general purpose integer

 Serial.begin(9600);

// (1) print the string

 Serial.println(str);

// (2) get the length of the string (excludes null terminator)

 num = strlen(str);

 Serial.print("String length is: ");

 Serial.println(num);

// (3) get the length of the array (includes null terminator)

 num = sizeof(str); // sizeof() is not a C string function

 Serial.print("Size of the array: ");

 Serial.println(num);

// (4) copy a string

 strcpy(out_str, str);

 Serial.println(out_str);

// (5) add a string to the end of a string (append)

 strcat(out_str, " sketch.");

 Serial.println(out_str);

 num = strlen(out_str);

 Serial.print("String length is: ");

 Serial.println(num);

Arduino

57

 num = sizeof(out_str);

 Serial.print("Size of the array out_str[]: ");

 Serial.println(num);

}

void loop()

{

}

Result

This is my string

String length is: 17

Size of the array: 18

This is my string

This is my string sketch.

String length is: 25

Size of the array out_str[]: 40

The sketch works in the following way.

(1) Print the String

The newly created string is printed to the Serial Monitor window as done in previous

sketches.

(2) Get the Length of the String

The strlen() function is used to get the length of the string. The length of the string is for

the printable characters only and does not include the null terminator.

The string contains 17 characters, so we see 17 printed in the Serial Monitor window.

(3) Get the Length of the Array

The operator sizeof() is used to get the length of the array that contains the string. The

length includes the null terminator, so the length is one more than the length of the string.

sizeof() looks like a function, but technically is an operator. It is not a part of the C string

library, but was used in the sketch to show the difference between the size of the array

and the size of the string (or string length).

(4) Copy a String

The strcpy() function is used to copy the str[] string to the out_num[] array. The strcpy()

function copies the second string passed to it into the first string. A copy of the string now

exists in the out_num[] array, but only takes up 18 elements of the array, so we still have

Arduino

58

22 free char elements in the array. These free elements are found after the string in

memory.

The string was copied to the array so that we would have some extra space in the array

to use in the next part of the sketch, which is adding a string to the end of a string.

(5) Append a String to a String (Concatenate)

The sketch joins one string to another, which is known as concatenation. This is done using

the strcat() function. The strcat() function puts the second string passed to it onto the end

of the first string passed to it.

After concatenation, the length of the string is printed to show the new string length. The

length of the array is then printed to show that we have a 25-character long string in a 40

element long array.

Remember that the 25-character long string actually takes up 26 characters of the array

because of the null terminating zero.

Array Bounds

When working with strings and arrays, it is very important to work within the bounds of

strings or arrays. In the example sketch, an array was created, which was 40 characters

long, in order to allocate the memory that could be used to manipulate strings.

If the array was made too small and we tried to copy a string that is bigger than the array

to it, the string would be copied over the end of the array. The memory beyond the end

of the array could contain other important data used in the sketch, which would then be

overwritten by our string. If the memory beyond the end of the string is overrun, it could

crash the sketch or cause unexpected behavior.

Arduino

59

The second type of string used in Arduino programming is the String Object.

What is an Object?

An object is a construct that contains both data and functions. A String object can be

created just like a variable and assigned a value or string. The String object contains

functions (which are called "methods" in object oriented programming (OOP)) which

operate on the string data contained in the String object.

The following sketch and explanation will make it clear what an object is and how the

String object is used.

Example

void setup()

 { String my_str = "This is my string.";

 Serial.begin(9600);

 // (1) print the string

 Serial.println(my_str);

 // (2) change the string to upper-case

 my_str.toUpperCase();

 Serial.println(my_str);

 // (3) overwrite the string

 my_str = "My new string.";

 Serial.println(my_str);

 // (4) replace a word in the string

 my_str.replace("string", "Arduino sketch");

 Serial.println(my_str);

 // (5) get the length of the string

 Serial.print("String length is: ");

 Serial.println(my_str.length());

}

void loop()

{ }

 Arduino – String Object

Arduino

60

Result

This is my string.

THIS IS MY STRING.

My new string.

My new Arduino sketch.

String length is: 22

A string object is created and assigned a value (or string) at the top of the sketch.

String my_str = "This is my string." ;

This creates a String object with the name my_str and gives it a value of "This is my

string.".

This can be compared to creating a variable and assigning a value to it such as an integer:

int my_var = 102;

The sketch works in the following way.

(1) Printing the String

The string can be printed to the Serial Monitor window just like a character array string.

(2) Convert the String to Upper-case

The string object my_str that was created, has a number of functions or methods that can

be operated on it. These methods are invoked by using the objects name followed by the

dot operator (.) and then the name of the function to use.

my_str.toUpperCase();

The toUpperCase() function operates on the string contained in the my_str object which

is of type String and converts the string data (or text) that the object contains to upper-

case characters. A list of the functions that the String class contains can be found in the

Arduino String reference. Technically, String is called a class and is used to create String

objects.

(3) Overwrite a String

The assignment operator is used to assign a new string to the my_str object that replaces

the old string.

my_str = "My new string." ;

The assignment operator cannot be used on character array strings, but works on String

objects only.

Arduino

61

(4) Replacing a Word in the String

The replace() function is used to replace the first string passed to it by the second string

passed to it. replace() is another function that is built into the String class and so is

available to use on the String object my_str.

(5) Getting the Length of the String

Getting the length of the string is easily done by using length(). In the example sketch,

the result returned by length() is passed directly to Serial.println() without using an

intermediate variable.

When to Use a String Object

A String object is much easier to use than a string character array. The object has built-

in functions that can perform a number of operations on strings.

The main disadvantage of using the String object is that it uses a lot of memory and can

quickly use up the Arduinos RAM memory, which may cause Arduino to hang, crash or

behave unexpectedly. If a sketch on an Arduino is small and limits the use of objects, then

there should be no problems.

Character array strings are more difficult to use and you may need to write your own

functions to operate on these types of strings. The advantage is that you have control on

the size of the string arrays that you make, so you can keep the arrays small to save

memory.

You need to make sure that you do not write beyond the end of the array bounds with

string arrays. The String object does not have this problem and will take care of the string

bounds for you, provided there is enough memory for it to operate on. The String object

can try to write to memory that does not exist when it runs out of memory, but will never

write over the end of the string that it is operating on.

Where Strings are Used

In this chapter we studied about the strings, how they behave in memory and their

operations.

The practical uses of strings will be covered in the next part of this course when we study

how to get user input from the Serial Monitor window and save the input in a string.

Arduino

62

Arduino provides four different time manipulation functions. They are-

 delay () function

 delayMicroseconds () function

 millis () function

 micros () function

delay() function

The way the delay() function works is pretty simple. It accepts a single integer (or

number) argument. This number represents the time (measured in milliseconds). The

program should wait until moving on to the next line of code when it encounters this

function. However, the problem is, the delay() function is not a good way to make your

program wait, because it is known as a “blocking” function.

delay() function Syntax

delay (ms) ;

where, ms is the time in milliseconds to pause (unsigned long).

Example

/* Flashing LED

 * ------------

 * Turns on and off a light emitting diode(LED) connected to a digital

 * pin, in intervals of 2 seconds. *

 */

int ledPin = 13; // LED connected to digital pin 13

void setup() {

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

 Arduino – Time

Arduino

63

}

delayMicroseconds() function

The delayMicroseconds() function accepts a single integer (or number) argument. This

number represents the time and is measured in microseconds. There are a thousand

microseconds in a millisecond, and a million microseconds in a second.

Currently, the largest value that can produce an accurate delay is 16383. This may change

in future Arduino releases. For delays longer than a few thousand microseconds, you

should use the delay() function instead.

delay() function Syntax

delayMicroseconds (us) ;

where, us is the number of microseconds to pause (unsigned int)

Example

/* Flashing LED

 * ------------

 * Turns on and off a light emitting diode(LED) connected to a digital

 * pin, in intervals of 1 seconds. *

 */

int ledPin = 13; // LED connected to digital pin 13

void setup() {

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop() {

 digitalWrite(ledPin, HIGH); // sets the LED on

 delayMicroseconds(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delayMicroseconds(1000); // waits for a second

}

millis() function

This function is used to return the number of milliseconds at the time, the Arduino board

begins running the current program. This number overflows i.e. goes back to zero after

approximately 50 days.

Arduino

64

millis() function Syntax

millis () ;

This function returns milliseconds from the start of the program.

Example

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Time:");

 time = millis();

 //prints time since program started

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

 delay(1000);

}

micros() function

The micros() function returns the number of microseconds from the time, the Arduino

board begins running the current program. This number overflows i.e. goes back to zero

after approximately 70 minutes. On 16 MHz Arduino boards (e.g. Duemilanove and Nano),

this function has a resolution of four microseconds (i.e. the value returned is always a

multiple of four). On 8 MHz Arduino boards (e.g. the LilyPad), this function has a resolution

of eight microseconds.

micros() function Syntax

micros () ;

This function returns number of microseconds since the program started (unsigned long)

Example

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time:");

 time = micros();

 //prints time since program started

Arduino

65

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

delay(1000);

}

Arduino

66

An array is a consecutive group of memory locations that are of the same type. To refer

to a particular location or element in the array, we specify the name of the array and the

position number of the particular element in the array.

The illustration given below shows an integer array called C that contains 11 elements.

You refer to any one of these elements by giving the array name followed by the particular

element’s position number in square brackets ([]). The position number is more formally

called a subscript or index (this number specifies the number of elements from the

beginning of the array). The first element has subscript 0 (zero) and is sometimes called

the zeros element.

Thus, the elements of array C are C[0] (pronounced “C sub zero”), C[1], C[2] and so on.

The highest subscript in array C is 10, which is 1 less than the number of elements in the

array (11). Array names follow the same conventions as other variable names.

A subscript must be an integer or integer expression (using any integral type). If a program

uses an expression as a subscript, then the program evaluates the expression to determine

the subscript. For example, if we assume that variable a is equal to 5 and that variable b

is equal to 6, then the statement adds 2 to array element C[11].

A subscripted array name is an lvalue, it can be used on the left side of an assignment,

just as non-array variable names can.

 Arduino – Arrays

Arduino

67

Let us examine array C in the given figure, more closely. The name of the entire array is

C. Its 11 elements are referred to as C[0] to C[10]. The value of C[0] is -45, the value of

C[1] is 6, the value of C[2] is 0, the value of C[7] is 62, and the value of C[10] is 78.

To print the sum of the values contained in the first three elements of array C, we would

write:

Serial.print (C[0] + C[1] + C[2]);

To divide the value of C[6] by 2 and assign the result to the variable x, we would write:

x = C[6] / 2;

Declaring Arrays

Arrays occupy space in memory. To specify the type of the elements and the number of

elements required by an array, use a declaration of the form:

type arrayName [arraySize] ;

The compiler reserves the appropriate amount of memory. (Recall that a declaration,

which reserves memory is more properly known as a definition). The arraySize must be

an integer constant greater than zero. For example, to tell the compiler to reserve 11

elements for integer array C, use the declaration:

int C[12]; // C is an array of 12 integers

Arrays can be declared to contain values of any non-reference data type. For example, an

array of type string can be used to store character strings.

Examples Using Arrays

This section gives many examples that demonstrate how to declare, initialize and

manipulate arrays.

Example 1: Declaring an Array and using a Loop to Initialize the Array’s

Elements

The program declares a 10-element integer array n. Lines a–b use a For statement to

initialize the array elements to zeros. Like other automatic variables, automatic arrays are

not implicitly initialized to zero. The first output statement (line c) displays the column

headings for the columns printed in the subsequent for statement (lines d–e), which prints

the array in tabular format.

Example

int n[10] ; // n is an array of 10 integers

 void setup ()

Arduino

68

{

}

void loop ()

{

 for (int i = 0; i < 10; ++i) // initialize elements of array n to 0

{

 n[i] = 0; // set element at location i to 0

 Serial.print (i) ;

 Serial.print (‘\r’) ;

}

for (int j = 0; j < 10; ++j) // output each array element's value

{

Serial.print (n[j]) ;

Serial.print (‘\r’) ;

} }

Result: It will produce the following result:

Element Value

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

0

Example 2: Initializing an Array in a Declaration with an Initializer List

The elements of an array can also be initialized in the array declaration by following the

array name with an equal-to sign and a brace-delimited comma-separated list of

initializers. The program uses an initializer list to initialize an integer array with 10 values

(line a) and prints the array in tabular format (lines b–c).

Example

// n is an array of 10 integers

int n[10] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 } ;

 void setup ()

Arduino

69

{

}

void loop ()

{

 for (int i = 0; i < 10; ++i) // initialize elements of array n to 0

{

 Serial.print (i) ;

 Serial.print (‘\r’) ;

}

for (int j = 0; j < 10; ++j) // output each array element's value

{

Serial.print (n[j]) ;

Serial.print (‘\r’) ;

} }

Result: It will produce the following result:

Element Value

0

1

2

3

4

5

6

7

8

9

32
27
64
18
95
14
90
70
60
37

Example 3: Summing the Elements of an Array

Often, the elements of an array represent a series of values to be used in a calculation.

For example, if the elements of an array represent exam grades, a professor may wish to

total the elements of the array and use that sum to calculate the class average for the

exam. The program sums the values contained in the 10-element integer array a.

Example

const int arraySize = 10; // constant variable indicating size of array

int a[arraySize] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

int total = 0;

 void setup ()

{

Arduino

70

}

void loop ()

{

// sum contents of array a

for (int i = 0; i < arraySize; ++i)

 total += a[i];

Serial.print (“Total of array elements : ”) ;

Serial.print(total) ;

}

Result: It will produce the following result:

Total of array elements: 849

Arduino – Passing Arrays to Functions

To pass an array argument to a function, specify the name of the array without any

brackets. For example, if an array hourlyTemperatures has been declared as the

function, the call passes array hourlyTemperatures and its size to function modifyArray.

Important Points

Here is a list of some important points that you need to know while passing arrays to

functions:

 When passing an array to a function, normally the array size is passed as well, so

the function can process the specific number of elements in the array. Otherwise,

we would need to build this knowledge into the called function itself or, worse yet,

place the array size in a global variable.

 C++ passes arrays to functions by reference i.e. the called functions can modify

the element values in the callers’ original arrays.

 The value of the name of the array is the address in the computer’s memory of the

first element of the array. Since the starting address of the array is passed, the

called function knows precisely where the array is stored in the memory. Therefore,

when the called function modifies array elements in its function body, it is modifying

the actual elements of the array in their original memory locations.

 Although the entire arrays are passed by reference, individual array elements are

passed by value exactly as simple variables are.

 To pass an element of an array to a function, use the subscripted name of the array

element as an argument in the function call.

Arduino

71

 For a function to receive an array through a function call, the function’s parameter

list must specify that the function expects to receive an array.

 For example, the function header for function modifyArray might be written as:

void modifyArray(int b[], int arraySize)

The statement indicates that modifyArray expects to receive the address of an array

of integers in parameter b and the number of array elements in parameter

arraySize. The array’s size is not required in the array brackets. If it is included,

the compiler ignores it; thus, arrays of any size can be passed to the function.

 C++ passes arrays to the functions by reference. When the called function uses

the array name b, it refers to the actual array in the caller (i.e.,

arrayhourlyTemperatures discussed at the beginning of this section).

Note the strange appearance of the function prototype for modifyArray.

void modifyArray(int [] , int) ;

This prototype could have been written in the following way for documentation purposes.

void modifyArray(int anyArrayName[], int anyVariableName) ;

However, C++ compilers ignore variable names in prototypes. Remember, the prototype

tells the compiler the number of arguments and the type of each argument in the order in

which the arguments are expected to appear.

The program in the next example demonstrates the difference between passing an entire

array and passing an array element.

Example

void modifyArray(int [], int); // appears strange; array and size

void modifyElement(int); // receive array element value

 void setup ()

{

 Serial.begin (9600);

 const int arraySize = 5; // size of array a

 int a[arraySize] = { 0, 1, 2, 3, 4 }; // initialize array a

 Serial.print ("Effects of passing entire array by reference:") ;

// output original array elements

for (int i = 0; i < arraySize ; ++i)

 Serial.print (a[i]) ;

Arduino

72

 Serial.print ("\r") ;

Serial.print ("The values of the modified array are:\n");

// output modified array elements

for (int j = 0; j < arraySize; ++j)

Serial.print (a[j]) ;

Serial.print ("\r") ;

Serial.print ("\r\rEffects of passing array element by value:");

Serial.print ("\ra[3] before modifyElement: ");

Serial.print (a[3]);

Serial.print ("\ra[3] after modifyElement: ");

Serial.print (a[3]);

}

void loop ()

{

}

// in function modifyArray, "b" points to the original array "a" in memory

void modifyArray(int b[], int sizeOfArray)

{

// multiply each array element by 2

for (int k = 0 ; k < sizeOfArray ; ++k)

 b[k] *= 2;

} // end function modifyArray

// in function modifyElement, "e" is a local copy of

// array element a[3] passed from main

void modifyElement(int e)

{

// multiply parameter by 2

Serial.print ("Value of element in modifyElement: ");

Serial.print ((e *= 2));

} // end function modifyElement

Result

Arduino

73

Effects of passing entire array by reference:01234

The values of the modified array are:01234

Effects of passing array element by value:

a[3] before modifyElement: 3

a[3] after modifyElement: 3

$ is not a hexadecimal digit

f is a hexadecimal digit

Multidimensional Arrays

Arrays with two dimensions (i.e., subscripts) often represent tables of values consisting of

information arranged in rows and columns.

Following are the key features of multidimensional arrays:

 To identify a particular table element, we must specify two subscripts.

 By convention, the first identifies the element’s row and the second identifies the

element’s column.

 Arrays that require two subscripts to identify a particular element are called two-

dimensional arrays or 2-D arrays.

 Arrays with two or more dimensions are known as multidimensional arrays and can

have more than two dimensions.

The following figure illustrates a two-dimensional array, a. The array contains three rows

and four columns, so it is a 3-by-4 array. In general, an array with m rows and n columns

is called an m-by-n array.

Arduino

74

Every element in array a is identified by an element name of the form a[i][j]. Here, a is

the name of the array, and i and j are the subscripts that uniquely identify each element

in a. Notice that the names of the elements in row 0 all have a first subscript of 0; the

names of the elements in column 3 all have a second subscript of 3.

A multidimensional array can be initialized in its declaration much like a one-dimensional

array. For example, a two-dimensional array b with values 1 and 2 in its row 0 elements

and values 3 and 4 in its row 1 elements could be declared and initialized as follows:

int b[2][2] = { { 1, 2 }, { 3, 4 } };

The values are grouped by row in braces. Therefore, 1 and 2 initialize b[0][0] and b[0][1],

respectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. If there are not

enough initializers for a given row, the remaining elements of that row are initialized to 0.

Thus, the following declaration initializes b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and

b[1][1] to 4.

int b[2][2] = { { 1 }, { 3, 4 } };

Example

Here is an example that demonstrates initializing two-dimensional arrays in declarations.

 Lines a–c declare three arrays, each with two rows and three columns.

 The declaration of array1 (line a) provides six initializers in the two sub lists. The

first sub list initializes row 0 of the array to the values 1, 2 and 3; the second sub

list initializes row 1 of the array to the values 4, 5 and 6.

 If the braces around each sub-list are removed from the array1 initializer list, the

compiler initializes the elements of row 0 followed by the elements of row 1,

yielding the same result.

 The declaration of array2 (line b) provides only five initializers.

 The initializers are assigned to row 0, then row 1. Any elements that do not have

an explicit initializer are initialized to zero, so array2[1][2] is initialized to zero.

 The declaration of array3 (line c) provides three initializers in two sub lists.

 The sub list for row 0 explicitly initializes the first two elements of row 0 to 1 and

2; the third element is implicitly initialized to zero.

 The sub list for row 1 explicitly initializes the first element to 4 and implicitly

initializes the last two elements to zero.

 The program calls function printArray to output each array’s elements. Notice that

the function prototype (line k) specify the parameter const int a[][columns].

 When a function receives a one-dimensional array as an argument, the array

brackets are empty in the function’s parameter list.

Arduino

75

 The size of a two-dimensional array’s first dimension (i.e., the number of rows) is

not required either, but all the subsequent dimension sizes are required. The

compiler uses these sizes to determine the locations in memory of elements in

multidimensional arrays.

 All array elements are stored consecutively in memory, regardless of the number

of dimensions. In a two-dimensional array, row 0 is stored in memory followed by

row 1.

Example

void printArray (const int [][3]); // prototype

const int rows = 2;

const int columns = 3;

int array1[rows][columns] = { { 1, 2, 3 }, { 4, 5, 6 } };

int array2[rows][columns] = { 1, 2, 3, 4, 5 };

int array3[rows][columns] = { { 1, 2 }, { 4 } };

 void setup ()

{

}

void loop ()

{

 Serial.print ("Values in array1 by row are: ") ;

 Serial.print (“\r”) ;

 printArray(array1) ;

 Serial.print ("Values in array2 by row are: ") ;

 Serial.print (“\r”) ;

 printArray(array2) ;

 Serial.print ("Values in array3 by row are: ") ;

 Serial.print (“\r”) ;

 printArray(array3) ;

 }

// output array with two rows and three columns

void printArray(const int a[][columns])

{

// loop through array's rows

for (int i = 0; i < rows; ++i)

{

// loop through columns of current row

for (int j = 0; j < columns; ++j)

Arduino

76

Serial.print (a[i][j]);

Serial.print (“\r”) ; // start new line of output

} // end outer for

} // end function printArray

Result

Values in array1 by row are:

1 2 3

4 5 6

Values in array2 by row are:

1 2 3

4 5 0

Values in array3 by row are:

1 2 0

4 0 0

Note: Each row is a one-dimensional array. To locate an element in a particular row, the

function must know exactly how many elements are in each row so it can skip the proper

number of memory locations when accessing the array. Thus, when accessing a[1][2], the

function knows to skip row 0’s three elements in memory to get to row 1. Then, the

function accesses element 2 of that row. Many common array manipulations use FOR

statements.

For example, the following FOR statement sets all the elements in row 2 of array a.

for (int column = 0; column < 4; ++column)

 a[2][column] = 0;

The FOR statement varies only the second subscript (i.e., the column subscript). The

preceding FOR statement is equivalent to the following assignment statements:

a[2][0] = 0;

a[2][1] = 0;

a[2][2] = 0;

a[2][3] = 0;

The following Nested FOR statement determines the total of all the elements in array a:

total = 0;

for (int row = 0; row < 3; ++row)

for (int column = 0; column < 4; ++column)

total += a[row][column];

Arduino

77

The FOR statement totals the elements of the array one row at a time. The outer FOR

statement begins by setting the row (i.e., the row subscript) to 0. Therefore, the elements

of row 0 may be totaled by the inner FOR statement.

The outer FOR statement then increments row to 1, so that the elements of row 1 can be

totaled. Then, the outer FOR statement increments row to 2, so that, the elements of row

2 can be totaled. When the nested FOR statement terminates, the total contains the sum

of all the array elements.

Arduino

78

Arduino – Function Libraries

Arduino

79

The pins on the Arduino board can be configured as either inputs or outputs. We will

explain the functioning of the pins in those modes. It is important to note that a majority

of Arduino analog pins, may be configured, and used, in exactly the same manner as

digital pins.

Pins Configured as INPUT

Arduino pins are by default configured as inputs, so they do not need to be explicitly

declared as inputs with pinMode() when you are using them as inputs. Pins configured

this way are said to be in a high-impedance state. Input pins make extremely small

demands on the circuit that they are sampling, equivalent to a series resistor of 100

megaohm in front of the pin.

This means that it takes very little current to switch the input pin from one state to another.

This makes the pins useful for such tasks as implementing a capacitive touch sensor or

reading an LED as a photodiode.

Pins configured as pinMode(pin, INPUT) with nothing connected to them, or with wires

connected to them that are not connected to other circuits, report seemingly random

changes in pin state, picking up electrical noise from the environment, or capacitively

coupling the state of a nearby pin.

Pull-up Resistors

Pull-up resistors are often useful to steer an input pin to a known state if no input is

present. This can be done by adding a pull-up resistor (to +5V), or a pull-down resistor

(resistor to ground) on the input. A 10K resistor is a good value for a pull-up or pull-down

resistor.

Using Built-in Pull-up Resistor with Pins Configured as Input

There are 20,000 pull-up resistors built into the Atmega chip that can be accessed from

software. These built-in pull-up resistors are accessed by setting the pinMode() as

INPUT_PULLUP. This effectively inverts the behavior of the INPUT mode, where HIGH

means the sensor is OFF and LOW means the sensor is ON. The value of this pull-up

depends on the microcontroller used. On most AVR-based boards, the value is guaranteed

to be between 20kΩ and 50kΩ. On the Arduino Due, it is between 50kΩ and 150kΩ. For

the exact value, consult the datasheet of the microcontroller on your board.

When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should

be connected to the ground. In case of a simple switch, this causes the pin to read HIGH

when the switch is open and LOW when the switch is pressed. The pull-up resistors provide

enough current to light an LED dimly connected to a pin configured as an input. If LEDs in

a project seem to be working, but very dimly, this is likely what is going on.

 Arduino – I/O Functions

http://www.arduino.cc/playground/Code/CapacitiveSensor
http://www.arduino.cc/playground/Learning/LEDSensor

Arduino

80

Same registers (internal chip memory locations) that control whether a pin is HIGH or

LOW control the pull-up resistors. Consequently, a pin that is configured to have pull-up

resistors turned on when the pin is in INPUTmode, will have the pin configured as HIGH if

the pin is then switched to an OUTPUT mode with pinMode(). This works in the other

direction as well, and an output pin that is left in a HIGH state will have the pull-up resistor

set if switched to an input with pinMode().

Example

pinMode(3,INPUT) ; // set pin to input without using built in pull up resistor

pinMode(5,INPUT_PULLUP) ; // set pin to input using built in pull up resistor

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This

means that they can provide a substantial amount of current to other circuits. Atmega

pins can source (provide positive current) or sink (provide negative current) up to 40 mA

(milliamps) of current to other devices/circuits. This is enough current to brightly light up

an LED (do not forget the series resistor), or run many sensors but not enough current to

run relays, solenoids, or motors.

Attempting to run high current devices from the output pins, can damage or destroy the

output transistors in the pin, or damage the entire Atmega chip. Often, this results in a

"dead" pin in the microcontroller but the remaining chips still function adequately. For this

reason, it is a good idea to connect the OUTPUT pins to other devices through 470Ω or 1k

resistors, unless maximum current drawn from the pins is required for a particular

application.

pinMode() Function

The pinMode() function is used to configure a specific pin to behave either as an input or

an output. It is possible to enable the internal pull-up resistors with the mode

INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal pull-ups.

pinMode () Function Syntax

Void setup ()

{

 pinMode (pin , mode);

}

 pin: the number of the pin whose mode you wish to set

 mode: INPUT, OUTPUT, or INPUT_PULLUP.

https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants

Arduino

81

Example

int button = 5 ; // button connected to pin 5

int LED = 6; // LED connected to pin 6

void setup ()

{

 pinMode(button , INPUT_PULLUP); // set the digital pin as input with pull-up

resistor

 pinMode(button , OUTPUT); // set the digital pin as output

}

void setup ()

{

 If (digitalRead(button)==LOW) // if button pressed

 {

 digitalWrite(LED,HIGH); // turn on led

 delay(500); // delay for 500 ms

 digitalWrite(LED,LOW); // turn off led

 delay(500); // delay for 500 ms

 }

 }

digitalWrite() Function

The digitalWrite() function is used to write a HIGH or a LOW value to a digital pin. If the

pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the

corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW. If the

pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the

internal pullup on the input pin. It is recommended to set the pinMode()

to INPUT_PULLUP to enable the internal pull-up resistor.

If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when calling

digitalWrite(HIGH), the LED may appear dim. Without explicitly setting pinMode(),

digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current-

limiting resistor.

https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/PinMode

Arduino

82

digitalWrite() Function Syntax

Void loop()

{

 digitalWrite (pin ,value);

}

 pin: the number of the pin whose mode you wish to set

 value: HIGH, or LOW.

Example

int LED = 6; // LED connected to pin 6

void setup ()

{

 pinMode(LED, OUTPUT); // set the digital pin as output

}

void setup ()

{ digitalWrite(LED,HIGH); // turn on led

 delay(500); // delay for 500 ms

 digitalWrite(LED,LOW); // turn off led

 delay(500); // delay for 500 ms

 }

analogRead() function

Arduino is able to detect whether there is a voltage applied to one of its pins and report it

through the digitalRead() function. There is a difference between an on/off sensor (which

detects the presence of an object) and an analog sensor, whose value continuously

changes. In order to read this type of sensor, we need a different type of pin.

In the lower-right part of the Arduino board, you will see six pins marked “Analog In”.

These special pins not only tell whether there is a voltage applied to them, but also its

value. By using the analogRead() function, we can read the voltage applied to one of the

pins.

This function returns a number between 0 and 1023, which represents voltages between

0 and 5 volts. For example, if there is a voltage of 2.5 V applied to pin number 0,

analogRead(0) returns 512.

analogRead() function Syntax

analogRead(pin);

https://www.arduino.cc/en/Reference/Constants

Arduino

83

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on

the Mini and Nano, 0 to 15 on the Mega)

Example

int analogPin = 3;//potentiometer wiper (middle terminal) connected to analog

pin 3

int val = 0; // variable to store the value read

void setup()

{

 Serial.begin(9600); // setup serial

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

Arduino

84

In this chapter, we will learn some advanced Input and Output Functions.

analogReference() Function

Configures the reference voltage used for analog input (i.e. the value used as the top of

the input range). The options are:

 DEFAULT: The default analog reference of 5 volts (on 5V Arduino boards) or 3.3

volts (on 3.3V Arduino boards)

 INTERNAL: An built-in reference, equal to 1.1 volts on the ATmega168 or

ATmega328 and 2.56 volts on the ATmega8 (not available on the Arduino Mega)

 INTERNAL1V1: A built-in 1.1V reference (Arduino Mega only)

 INTERNAL2V56: A built-in 2.56V reference (Arduino Mega only)

 EXTERNAL: The voltage applied to the AREF pin (0 to 5V only) is used as the

reference

analogReference() Function Syntax

analogReference (type);

type: can use any type of the follow (DEFAULT, INTERNAL, INTERNAL1V1,

INTERNAL2V56, EXTERNAL)

Do not use anything less than 0V or more than 5V for external reference voltage on the

AREF pin. If you are using an external reference on the AREF pin, you must set the analog

reference to EXTERNAL before calling the analogRead() function. Otherwise, you will

short the active reference voltage (internally generated) and the AREF pin, possibly

damaging the microcontroller on your Arduino board.

 Arduino – Advanced I/O Function

Arduino

85

Alternatively, you can connect the external reference voltage to the AREF pin through a

5K resistor, allowing you to switch between external and internal reference voltages.

Note that the resistor will alter the voltage that is used as the reference because there is

an internal 32K resistor on the AREF pin. The two act as a voltage divider. For example,

2.5V applied through the resistor will yield 2.5 * 32 / (32 + 5) = ~2.2V at the AREF pin.

Example

int analogPin = 3;// potentiometer wiper (middle terminal) connected to analog

pin 3

int val = 0; // variable to store the read value

void setup()

{

 Serial.begin(9600); // setup serial

 analogReference(EXTERNAL); // the voltage applied to the AREF pin (0 to 5V

only)

 is used as the reference.

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

Arduino

86

All data is entered into computers as characters, which includes letters, digits and various

special symbols. In this section, we discuss the capabilities of C++ for examining and

manipulating individual characters.

The character-handling library includes several functions that perform useful tests and

manipulations of character data. Each function receives a character, represented as an int,

or EOF as an argument. Characters are often manipulated as integers.

Remember that EOF normally has the value –1 and that some hardware architectures do

not allow negative values to be stored in char variables. Therefore, the character-handling

functions manipulate characters as integers.

The following table summarizes the functions of the character-handling library. When using

functions from the character-handling library, include the <cctype> header.

Prototype Description

int isdigit(int c) Returns 1 if c is a digit and 0 otherwise.

int isalpha(int c) Returns 1 if c is a letter and 0 otherwise.

int isalnum(int c) Returns 1 if c is a digit or a letter and 0 otherwise.

int isxdigit(int c)

Returns 1 if c is a hexadecimal digit character and 0 otherwise.

(See Appendix D, Number Systems, for a detailed explanation

of binary, octal, decimal and hexadecimal numbers.)

int islower(int c) Returns 1 if c is a lowercase letter and 0 otherwise.

int isupper(int c) Returns 1 if c is an uppercase letter; 0 otherwise.

int isspace(int c)

Returns 1 if c is a white-space character—newline ('\n'), space

(' '), form feed ('\f'), carriage return ('\r'), horizontal tab ('\t'),

or vertical tab ('\v')—and 0 otherwise.

int iscntrl(int c)

Returns 1 if c is a control character, such as newline ('\n'), form

feed ('\f'), carriage return ('\r'), horizontal tab ('\t'), vertical tab

('\v'), alert ('\a'), or backspace ('\b')—and 0 otherwise.

int ispunct(int c)
Returns 1 if c is a printing character other than a space, a digit,

or a letter and 0 otherwise.

int isprint(int c)
Returns 1 if c is a printing character including space (' ') and 0

otherwise.

 Arduino – Character Functions

Arduino

87

int isgraph(int c)
Returns 1 if c is a printing character other than space (' ') and 0

otherwise.

Examples

The following example demonstrates the use of the functions isdigit, isalpha, isalnum

and isxdigit. Function isdigit determines whether its argument is a digit (0–9). The

function isalpha determines whether its argument is an uppercase letter (A-Z) or a

lowercase letter (a–z). The function isalnum determines whether its argument is an

uppercase, lowercase letter or a digit. Function isxdigit determines whether its argument

is a hexadecimal digit (A–F, a–f, 0–9).

Example 1

void setup ()

{

 Serial.begin (9600);

 Serial.print ("According to isdigit:\r");

Serial.print (isdigit('8') ? "8 is a": "8 is not a");

Serial.print (" digit\r");

Serial.print (isdigit('8') ?"# is a": "# is not a") ;

Serial.print (" digit\r");

Serial.print ("\rAccording to isalpha:\r");

Serial.print (isalpha('A') ?"A is a": "A is not a");

Serial.print (" letter\r");

Serial.print (isalpha('A') ?"b is a": "b is not a");

Serial.print (" letter\r");

Serial.print (isalpha('A') ?"& is a": "& is not a");

Serial.print (" letter\r");

Serial.print (isalpha('A') ?"4 is a":"4 is not a");

Serial.print (" letter\r");

Serial.print ("\rAccording to isalnum:\r");

Serial.print (isalnum('A') ?"A is a" : "A is not a");

Arduino

88

Serial.print (" digit or a letter\r");

Serial.print (isalnum('8') ?"8 is a" : "8 is not a") ;

Serial.print (" digit or a letter\r");

Serial.print (isalnum('#') ?"# is a" : "# is not a");

Serial.print (" digit or a letter\r");

Serial.print ("\rAccording to isxdigit:\r");

Serial.print (isxdigit('F') ?"F is a" : "F is not a");

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('J') ?"J is a" : "J is not a") ;

Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('7') ?"7 is a" : "7 is not a") ;

}

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('$') ? "$ is a" : "$ is not a");

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('f') ? “f is a" : "f is not a");

Serial.print (" hexadecimal digit\r");

}

void loop ()

{

}

Result

According to isdigit:

8 is a digit

is not a digit

According to isalpha:

A is a letter

b is a letter

& is not a letter

4 is not a letter

According to isalnum:

A is a digit or a letter

Arduino

89

8 is a digit or a letter

is not a digit or a letter

According to isxdigit:

F is a hexadecimal digit

J is not a hexadecimal digit

7 is a hexadecimal digit

$ is not a hexadecimal digit

f is a hexadecimal digit

We use the conditional operator (?:) with each function to determine whether the string "

is a " or the string " is not a " should be printed in the output for each character tested.

For example, line a indicates that if '8' is a digit—i.e., if isdigit returns a true (nonzero)

value—the string "8 is a " is printed. If '8' is not a digit (i.e., if isdigit returns 0), the string

" 8 is not a " is printed.

Example 2

The following example demonstrates the use of the functions islower and isupper. The

function islower determines whether its argument is a lowercase letter (a–z). Function

isupper determines whether its argument is an uppercase letter (A–Z).

int thisChar = 0xA0;

void setup ()

{

 Serial.begin (9600);

 Serial.print ("According to islower:\r") ;

Serial.print (islower('p') ? "p is a" : "p is not a");

Serial.print (" lowercase letter\r");

Serial.print (islower('P') ? "P is a" : "P is not a") ;

Serial.print ("lowercase letter\r");

Serial.print (islower('5') ? "5 is a" : "5 is not a");

Serial.print (" lowercase letter\r");

Serial.print (islower('!')? "! is a" : "! is not a") ;

Serial.print ("lowercase letter\r");

Serial.print ("\rAccording to isupper:\r") ;

Serial.print (isupper ('D') ? "D is a" : "D is not an");

Serial.print (" uppercase letter\r");

Serial.print (isupper ('d')? "d is a" : "d is not an") ;

Arduino

90

Serial.print (" uppercase letter\r");

Serial.print (isupper ('8') ? "8 is a" : "8 is not an");

Serial.print (" uppercase letter\r");

Serial.print (islower('$')? "$ is a" : "$ is not an") ;

Serial.print ("uppercase letter\r ");

}

void setup ()

{

}

Result

According to islower:

p is a lowercase letter

P is not a lowercase letter

5 is not a lowercase letter

! is not a lowercase letter

According to isupper:

D is an uppercase letter

d is not an uppercase letter

8 is not an uppercase letter

$ is not an uppercase letter

Example 3

The following example demonstrates the use of functions isspace, iscntrl, ispunct,

isprint and isgraph.

 The function isspace determines whether its argument is a white-space character,

such as space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal

tab ('\t') or vertical tab ('\v').

 The function iscntrl determines whether its argument is a control character such

as horizontal tab ('\t'), vertical tab ('\v'), form feed ('\f'), alert ('\a'), backspace

('\b'), carriage return ('\r') or newline ('\n').

 The function ispunct determines whether its argument is a printing character other

than a space, digit or letter, such as $, #, (,), [,], {, }, ;, : or %.

 The function isprint determines whether its argument is a character that can be

displayed on the screen (including the space character).

 The function isgraph tests for the same characters as isprint, but the space

character is not included.

Arduino

91

 void setup ()

{

 Serial.begin (9600);

 Serial.print (" According to isspace:\rNewline ") ;

Serial.print (isspace('\n')? " is a" : " is not a");

Serial.print (" whitespace character\rHorizontal tab") ;

Serial.print (isspace('\t')? " is a" : " is not a");

Serial.print (" whitespace character\n") ;

Serial.print (isspace('%')? " % is a" : " % is not a");

Serial.print (" \rAccording to iscntrl:\rNewline") ;

Serial.print (iscntrl('\n')?"is a" : " is not a") ;

Serial.print (" control character\r");

Serial.print (iscntrl('$') ? " $ is a" : " $ is not a");

Serial.print (" control character\r");

Serial.print ("\rAccording to ispunct:\r");

Serial.print (ispunct(';') ?"; is a" : "; is not a") ;

Serial.print (" punctuation character\r");

Serial.print (ispunct('Y') ?"Y is a" : "Y is not a") ;

Serial.print ("punctuation character\r");

Serial.print (ispunct('#') ?"# is a" : "# is not a") ;

Serial.print ("punctuation character\r");

Serial.print ("\r According to isprint:\r");

Serial.print (isprint('$') ?"$ is a" : "$ is not a");

Serial.print (" printing character\rAlert ");

Serial.print (isprint('\a') ?" is a" : " is not a");

Serial.print (" printing character\rSpace ");

Serial.print (isprint(' ') ?" is a" : " is not a");

Serial.print (" printing character\r");

Serial.print ("\r According to isgraph:\r");

Serial.print (isgraph ('Q') ?"Q is a" : "Q is not a");

Serial.print ("printing character other than a space\rSpace ");

Serial.print (isgraph (' ') ?" is a" : " is not a");

Arduino

92

Serial.print ("printing character other than a space ");

}

void loop ()

{

}

Result

According to isspace:

Newline is a whitespace character

Horizontal tab is a whitespace character

% is not a whitespace character

According to iscntrl:

Newline is a control character

$ is not a control character

According to ispunct:

; is a punctuation character

Y is not a punctuation character

is a punctuation character

According to isprint:

$ is a printing character

Alert is not a printing character

Space is a printing character

According to isgraph:

Q is a printing character other than a space

Space is not a printing character other than a space

Arduino

93

The Arduino Math library (math.h) includes a number of useful mathematical functions for

manipulating floating-point numbers.

Library Macros

Following are the macros defined in the header math.h:

Macros Value Description

M_E 2.7182818284590452354 The constant e.

M_LOG2E
 1.4426950408889634074

/* log_2 e */

The logarithm of the e to base

2

M_1_PI
 0.31830988618379067154

/* 1/pi */
The constant 1/pi

M_2_PI
0.63661977236758134308

/* 2/pi */
The constant 2/pi

M_2_SQRTPI
1.12837916709551257390

/* 2/sqrt(pi) */
The constant 2/sqrt(pi)

M_LN10
2.30258509299404568402

/* log_e 10 */
The natural logarithm of the 10

M_LN2
0.69314718055994530942

/* log_e 2 */
The natural logarithm of the 2

M_LOG10E
0.43429448190325182765

/* log_10 e */

The logarithm of the e to base

10

M_PI
3.14159265358979323846

/* pi */
The constant pi

M_PI_2
 3.3V1.57079632679489661923

/* pi/2 */
The constant pi/2

M_PI_4
0.78539816339744830962

/* pi/4 */
The constant pi/4

M_SQRT1_2 0.70710678118654752440 The constant 1/sqrt(2)

 Arduino – Math Library

Arduino

94

/* 1/sqrt(2) */

M_SQRT2
1.41421356237309504880

/* sqrt(2) */
The square root of 2

acosf - The alias for acos() function

asinf - The alias for asin() function

atan2f - The alias for atan2() function

cbrtf - The alias for cbrt() function

ceilf - The alias for ceil() function

copysignf - The alias for copysign()

function

coshf - The alias for cosh() function

expf - The alias for exp() function

fabsf - The alias for fabs() function

fdimf - The alias for fdim() function

floorf - The alias for floor() function

fmaxf - The alias for fmax() function

fminf - The alias for fmin() function

fmodf - The alias for fmod() function

frexpf - The alias for frexp() function

hypotf - The alias for hypot() function

INFINITY - INFINITY constant

isfinitef - The alias for isfinite() function

isinff - The alias for isinf() function

isnanf - The alias for isnan() function

ldexpf - The alias for ldexp() function

Arduino

95

log10f - The alias for log10() function

logf - The alias for log() function

lrintf - The alias for lrint() function

lroundf - The alias for lround() function

Library Functions

The following functions are defined in the header math.h:

Library Function Description

double acos (double __x)

The acos() function computes the principal

value of the arc cosine of __x. The returned

value is in the range [0, pi] radians. A

domain error occurs for arguments not in

the range [-1, +1].

double asin (double __x)

The asin() function computes the principal

value of the arc sine of __x. The returned

value is in the range [-pi/2, pi/2] radians.

A domain error occurs for arguments not in

the range [-1, +1].

double atan (double __x)

The atan() function computes the principal

value of the arc tangent of __x. The

returned value is in the range [-pi/2, pi/2]

radians.

double atan2 (double __y, double __x)

The atan2() function computes the

principal value of the arc tangent of __y /

__x, using the signs of both arguments to

determine the quadrant of the return

value. The returned value is in the range [-

pi, +pi] radians.

double cbrt (double __x)
The cbrt() function returns the cube root of

__x.

double ceil (double __x)

The ceil() function returns the smallest

integral value greater than or equal to __x,

expressed as a floating-point number.

static double copysign (double __x, double

__y)

The copysign() function returns __x but

with the sign of __y. They work even if __x

or __y are NaN or zero.

double cos(double __x)
The cos() function returns the cosine of

__x, measured in radians.

Arduino

96

double cosh (double __x)
The cosh() function returns the hyperbolic

cosine of __x.

double exp (double __x)
The exp() function returns the exponential

value of __x.

double fabs (double __x)
The fabs() function computes the absolute

value of a floating-point number __x.

double fdim (double __x, double __y)

The fdim() function returns max(__x - __y,

0). If __x or __y or both are NaN, NaN is

returned.

double floor (double __x)

The floor() function returns the largest

integral value less than or equal to __x,

expressed as a floating-point number.

double fma (double __x, double __y,

double __z)

The fma() function performs floating-point

multiply-add. This is the operation (__x *

__y) + __z, but the intermediate result is

not rounded to the destination type. This

can sometimes improve the precision of a

calculation.

double fmax (double __x, double __y)

The fmax() function returns the greater of

the two values __x and __y. If an

argument is NaN, the other argument is

returned. If both the arguments are NaN,

NaN is returned.

double fmin (double __x, double __y)

The fmin() function returns the lesser of

the two values __x and __y. If an

argument is NaN, the other argument is

returned. If both the arguments are NaN,

NaN is returned.

double fmod (double __x, double__y)
The function fmod() returns the floating-

point remainder of __x / __y.

double frexp (double __x, int * __pexp)

The frexp() function breaks a floating-point

number into a normalized fraction and an

integral power of 2. It stores the integer in

the int object pointed to by __pexp. If __x

is a normal float point number, the frexp()

function returns the value v, such that v

has a magnitude in the interval [1/2, 1) or

zero, and __x equals v times 2 raised to

the power __pexp. If __x is zero, both

parts of the result are zero. If __x is not a

finite number, the frexp() returns __x as is

and stores 0 by __pexp.

Note: This implementation permits a zero

pointer as a directive to skip a storing the

exponent.

Arduino

97

double hypot (double __x, double__y)

The hypot() function returns sqrt(__x*__x

+ __y*__y). This is the length of the

hypotenuse of a right triangle with sides of

length __x and __y, or the distance of the

point (__x, __y) from the origin. Using this

function instead of the direct formula is

wise, since the error is much smaller. No

underflow with small __x and __y. No

overflow if result is in range.

static int isfinite (double __x)

The isfinite() function returns a nonzero

value if __x is finite: not plus or minus

infinity, and not NaN.

int isinf (double __x)

The function isinf() returns 1 if the

argument __x is positive infinity, -1 if __x

is negative infinity, and 0 otherwise.

Note: The GCC 4.3 can replace this

function with inline code that returns the 1

value for both infinities (gcc bug #35509).

int isnan (double __x)

The function isnan() returns 1 if the

argument __x represents a "not-a-

number" (NaN) object, otherwise 0.

double ldexp (double __x, int __exp)

The ldexp() function multiplies a floating-

point number by an integral power of 2. It

returns the value of __x times 2 raised to

the power __exp.

double log (double __x)
The log() function returns the natural

logarithm of argument __x.

double log10(double __x)
The log10() function returns the logarithm

of argument __x to base 10.

long lrint (double __x)

The lrint() function rounds __x to the

nearest integer, rounding the halfway

cases to the even integer direction. (That

is both 1.5 and 2.5 values are rounded to

2). This function is similar to rint()

function, but it differs in type of return

value and in that an overflow is possible.

Returns

The rounded long integer value. If __x is

not a finite number or an overflow, this

realization returns the LONG_MIN value

(0x80000000).

long lround (double __x)

The lround() function rounds __x to the

nearest integer, but rounds halfway cases

away from zero (instead of to the nearest

even integer). This function is similar to

Arduino

98

round() function, but it differs in type of

return value and in that an overflow is

possible.

Returns

The rounded long integer value. If __x is

not a finite number or an overflow was, this

realization returns the LONG_MIN value

(0x80000000).

double modf (double __x, double *

__iptr)

The modf() function breaks the argument

__x into integral and fractional parts, each

of which has the same sign as the

argument. It stores the integral part as a

double in the object pointed to by __iptr.

The modf() function returns the signed

fractional part of __x.

Note: This implementation skips writing by

zero pointer. However, the GCC 4.3 can

replace this function with inline code that

does not permit to use NULL address for

the avoiding of storing.

float modff (float __x, float * __iptr) The alias for modf().

double pow (double __x, double __y)
The function pow() returns the value of __x

to the exponent __y.

double round (double __x)

The round() function rounds __x to the

nearest integer, but rounds halfway cases

away from zero (instead of to the nearest

even integer). Overflow is impossible.

Returns

The rounded value. If __x is an integral or

infinite, __x itself is returned. If __x is

NaN, then NaN is returned.

int signbit (double __x)

The signbit() function returns a nonzero

value if the value of __x has its sign bit set.

This is not the same as `__x < 0.0',

because IEEE 754 floating point allows zero

to be signed. The comparison `-0.0 < 0.0'

is false, but `signbit (-0.0)' will return a

nonzero value.

double sin (double __x)
The sin() function returns the sine of __x,

measured in radians.

double sinh (double __x)
The sinh() function returns the hyperbolic

sine of __x.

Arduino

99

double sqrt (double __x)
The sqrt() function returns the non-

negative square root of __x.

double square (double __x)

The function square() returns __x * __x.

Note: This function does not belong to the

C standard definition.

double tan (double __x)
The tan() function returns the tangent of

__x, measured in radians.

double tanh (double __x)
The tanh() function returns the hyperbolic

tangent of __x.

double trunc (double __x)

The trunc() function rounds __x to the

nearest integer not larger in absolute

value.

Example

The following example shows how to use the most common math.h library functions:

double double__x = 45.45 ;

double double__y = 30.20 ;

void setup()

{

 Serial.begin(9600);

 Serial.print("cos num = ");

 Serial.println (cos (double__x)); // returns cosine of x

 Serial.print("absolute value of num = ");

 Serial.println (fabs (double__x)); // absolute value of a float

 Serial.print("floating point modulo =");

 Serial.println (fmod (double__x, double__y)); // floating point modulo

 Serial.print("sine of num = ");

 Serial.println (sin (double__x)) ;// returns sine of x

 Serial.print("square root of num : ");

 Serial.println (sqrt (double__x));// returns square root of x

 Serial.print("tangent of num : ");

 Serial.println (tan (double__x)); // returns tangent of x

 Serial.print("exponential value of num : ");

 Serial.println (exp (double__x)); // function returns the exponential value

of x.

 Serial.print("cos num : ");

Arduino

100

 Serial.println (atan (double__x)); // arc tangent of x

 Serial.print("tangent of num : ");

 Serial.println (atan2 (double__y, double__x));// arc tangent of y/x

 Serial.print("arc tangent of num : ");

 Serial.println (log (double__x)) ; // natural logarithm of x

 Serial.print("cos num : ");

 Serial.println (log10 (double__x)); // logarithm of x to base 10.

 Serial.print("logarithm of num to base 10 : ");

 Serial.println (pow (double__x, double__y));// x to power of y

 Serial.print("power of num : ");

 Serial.println (square (double__x)); // square of x

}

void loop()

{

}

Result

cos num = 0.10

absolute value of num = 45.45

floating point modulo =15.25

sine of num = 0.99

square root of num : 6.74

tangent of num : 9.67

exponential value of num : ovf

cos num : 1.55

tangent of num : 0.59

arc tangent of num : 3.82

cos num : 1.66

logarithm of num to base 10 : inf

power of num : 2065.70

Arduino

101

You need to use Trigonometry practically like calculating the distance for moving object or

angular speed. Arduino provides traditional trigonometric functions (sin, cos, tan, asin,

acos, atan) that can be summarized by writing their prototypes. Math.h contains the

trigonometry function's prototype.

Trigonometric Exact Syntax

double sin(double x); //returns sine of x radians

double cos(double y); //returns cosine of y radians

double tan(double x); //returns the tangent of x radians

double acos(double x); //returns A, the angle corresponding to cos (A) = x

double asin(double x); //returns A, the angle corresponding to sin (A) = x

double atan(double x); //returns A, the angle corresponding to tan (A) = x

Example

double sine = sin(2); // approximately 0.90929737091

double cosine = cos(2); // approximately -0.41614685058

double tangent = tan(2); // approximately -2.18503975868

 Arduino – Trigonometric Functions

Arduino

102

Arduino ─ Advanced

Arduino

103

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3

CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller.

Important features -

 It has 54 digital input/output pins (of which 12 can be used as PWM outputs)

 12 analog inputs

 4 UARTs (hardware serial ports)

 84 MHz clock, an USB OTG capable connection

 2 DAC (digital to analog), 2 TWI, a power jack, an SPI header, a JTAG header

 Reset button and an erase button

 Arduino – Due & Zero

http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf

Arduino

104

Characteristics of the Arduino Due Board

Operating
volt

CPU
speed

Analog
in/out

Digital

IO/
PWM

EEPROM

[KB]

SRAM

[KB]

Flash

[KB]
USB UART

3.3 Volt 84 Mhz 12/2 54/12 - 96 512
2

micro
4

Communication

 4 Hardware UARTs

 2 I2C

 1 CAN Interface (Automotive communication protocol)

 1 SPI

 1 Interface JTAG (10 pin)

 1 USB Host (like as Leonardo)

 1 Programming Port

Unlike most Arduino boards, the Arduino Due board runs at 3.3V. The maximum voltage

that the I/O pins can tolerate is 3.3V. Applying voltages higher than 3.3V to any I/O pin

could damage the board.

The board contains everything needed to support the microcontroller. You can simply

connect it to a computer with a micro-USB cable or power it with an AC-to-DC adapter or

battery to get started. The Due is compatible with all Arduino shields that work at 3.3V.

Arduino Zero

The Zero is a simple and powerful 32-bit extension of the platform established by the UNO.

The Zero board expands the family by providing increased performance, enabling a variety

of project opportunities for devices, and acts as a great educational tool for learning about

32-bit application development.

Important features are -

 The Zero applications span from smart IoT devices, wearable technology, high-tech

automation, to crazy robotics.

 The board is powered by Atmel’s SAMD21 MCU, which features a 32-bit ARM

Cortex® M0+ core.

 One of its most important features is Atmel’s Embedded Debugger (EDBG), which

provides a full debug interface without the need for additional hardware,

significantly increasing the ease-of-use for software debugging.

 EDBG also supports a virtual COM port that can be used for device and bootloader

programming.

Arduino

105

Characteristics of the Arduino Zero board

Operating

volt

CPU

speed

Analog

in/out

Digital

IO/

PWM

EEPROM

[KB]

SRAM

[KB]

Flash

[KB]
USB UART

3.3 Volt 48 Mhz 6/1 14/10 - 32 256
2

micro
2

Unlike most Arduino and Genuino boards, the Zero runs at 3.3V. The maximum voltage

that the I/O pins can tolerate is 3.3V. Applying voltages higher than 3.3V to any I/O pin

could damage the board.

The board contains everything needed to support the microcontroller. You can simply

connect it to a computer with a micro-USB cable or power it with an AC-to-DC adapter or

a battery to get started. The Zero is compatible with all the shields that work at 3.3V.

Arduino

106

Pulse Width Modulation or PWM is a common technique used to vary the width of the

pulses in a pulse-train. PWM has many applications such as controlling servos and speed

controllers, limiting the effective power of motors and LEDs.

Basic Principle of PWM

Pulse width modulation is basically, a square wave with a varying high and low time. A

basic PWM signal is shown in the following figure.

There are various terms associated with PWM:

 On-Time: Duration of time signal is high.

 Off-Time: Duration of time signal is low.

 Period: It is represented as the sum of on-time and off-time of PWM signal.

 Duty Cycle: It is represented as the percentage of time signal that remains on

during the period of the PWM signal.

Period

As shown in the figure, Ton denotes the on-time and Toff denotes the off-time of signal.

Period is the sum of both on and off times and is calculated as shown in the following

equation:

 Arduino – Pulse Width Modulation

Arduino

107

Duty Cycle

Duty cycle is calculated as the on-time of the period of time. Using the period calculated

above, duty cycle is calculated as -

analogWrite() Function

The analogWrite() function writes an analog value (PWM wave) to a pin. It can be used

to light a LED at varying brightness or drive a motor at various speeds. After a call of

the analogWrite() function, the pin will generate a steady square wave of the specified

duty cycle until the next call to analogWrite() or a call to digitalRead() or digitalWrite() on

the same pin). The frequency of the PWM signal on most pins is approximately 490 Hz.

On the Uno and similar boards, pins 5 and 6 have a frequency of approximately 980 Hz.

Pins 3 and 11 on the Leonardo also run at 980 Hz.

On most Arduino boards (those with the ATmega168 or ATmega328), this function works

on pins 3, 5, 6, 9, 10, and 11. On the Arduino Mega, it works on pins 2 - 13 and 44 - 46.

Older Arduino boards with an ATmega8 only support analogWrite() on pins 9, 10, and

11.

The Arduino Due supports analogWrite() on pins 2 through 13, and

pins DAC0 and DAC1. Unlike the PWM pins, DAC0 and DAC1 are Digital to Analog

converters, and act as true analog outputs.

You do not need to call pinMode() to set the pin as an output before calling analogWrite().

analogWrite() Function Syntax

analogWrite (pin , value) ;

value: the duty cycle: between 0 (always off) and 255 (always on).

https://www.arduino.cc/en/Tutorial/PWM

Arduino

108

Example

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, (val / 4)); // analogRead values go from 0 to 1023,

analogWrite values from 0 to 255

}

Arduino

109

To generate random numbers, you can use Arduino random number functions. We have

two functions -

 randomSeed(seed)

 random()

randomSeed (seed)

The function randomSeed(seed) resets Arduino’s pseudorandom number generator.

Although the distribution of the numbers returned by random() is essentially random, the

sequence is predictable. You should reset the generator to some random value. If you

have an unconnected analog pin, it might pick up random noise from the surrounding

environment. These may be radio waves, cosmic rays, electromagnetic interference from

cell phones, fluorescent lights and so on.

Example

randomSeed(analogRead(5)); // randomize using noise from analog pin 5

random()

The random function generates pseudo-random numbers. Following is the syntax.

random() Statements Syntax

long random(max) // it generate random numbers from 0 to max

long random(min, max) // it generate random numbers from min to max

Example

long randNumber;

void setup()

{

 Serial.begin(9600);

 // if analog input pin 0 is unconnected, random analog

 // noise will cause the call to randomSeed() to generate

 // different seed numbers each time the sketch runs.

 // randomSeed() will then shuffle the random function.

 Arduino – Random Numbers

Arduino

110

 randomSeed(analogRead(0));

}

void loop() {

 // print a random number from 0 to 299

 Serial.print("random1=");

 randNumber = random(300);

 Serial.println(randNumber); // print a random number from 0to 299

 Serial.print("random2=");

 randNumber = random(10, 20);// print a random number from 10 to 19

 Serial.println (randNumber);

 delay(50);

}

Let us now refresh our knowledge on some of the basic concepts such as bits and bytes.

Bits

A bit is just a binary digit.

 The binary system uses two digits, 0 and 1.

 Similar to the decimal number system, in which digits of a number do not have the

same value, the ‘significance’ of a bit depends on its position in the binary number.

For example, digits in the decimal number 666 are the same, but have different

values.

Bytes

A byte consists of eight bits.

 If a bit is a digit, it is logical that bytes represent numbers.

 All mathematical operations can be performed upon them.

 The digits in a byte do not have the same significance either.

Arduino

111

 The leftmost bit has the greatest value called the Most Significant Bit (MSB).

 The rightmost bit has the least value and is therefore, called the Least Significant

Bit (LSB).

 Since eight zeros and ones of one byte can be combined in 256 different ways, the

largest decimal number that can be represented by one byte is 255 (one

combination represents a zero).

Arduino

112

Interrupts stop the current work of Arduino such that some other work can be done.

Suppose you are sitting at home, chatting with someone. Suddenly the telephone rings.

You stop chatting, and pick up the telephone to speak to the caller. When you have finished

your telephonic conversation, you go back to chatting with the person before the telephone

rang.

Similarly, you can think of the main routine as chatting to someone, the telephone ringing

causes you to stop chatting. The interrupt service routine is the process of talking on the

telephone. When the telephone conversation ends, you then go back to your main routine

of chatting. This example explains exactly how an interrupt causes a processor to act.

The main program is running and performing some function in a circuit. However, when

an interrupt occurs the main program halts while another routine is carried out. When this

routine finishes, the processor goes back to the main routine again.

Important features

Here are some important features about interrupts:

 Interrupts can come from various sources. In this case, we are using a hardware

interrupt that is triggered by a state change on one of the digital pins.

 Most Arduino designs have two hardware interrupts (referred to as "interrupt0" and

"interrupt1") hard-wired to digital I/O pins 2 and 3, respectively.

 The Arduino Mega has six hardware interrupts including the additional interrupts

("interrupt2" through "interrupt5") on pins 21, 20, 19, and 18.

 Arduino – Interrupts

Arduino

113

 You can define a routine using a special function called as “Interrupt Service

Routine” (usually known as ISR).

 You can define the routine and specify conditions at the rising edge, falling edge or

both. At these specific conditions, the interrupt would be serviced.

 It is possible to have that function executed automatically, each time an event

happens on an input pin.

Types of Interrupts

There are two types of interrupts -

 Hardware Interrupts - They occur in response to an external event, such as an

external interrupt pin going high or low.

 Software Interrupts - They occur in response to an instruction sent in software.

The only type of interrupt that the “Arduino language” supports is the

attachInterrupt() function.

Using Interrupts in Arduino

Interrupts are very useful in Arduino programs as it helps in solving timing problems. A

good application of an interrupt is reading a rotary encoder or observing a user input.

Generally, an ISR should be as short and fast as possible. If your sketch uses

multiple ISRs, only one can run at a time. Other interrupts will be executed after the

current one finishes in an order that depends on the priority they have.

Typically, global variables are used to pass data between an ISR and the main program.

To make sure variables shared between an ISR and the main program are updated

correctly, declare them as volatile.

attachInterrupt Statement Syntax

attachInterrupt(digitalPinToInterrupt(pin),ISR,mode);//recommended for arduino

board

attachInterrupt(pin, ISR, mode) ; //recommended Arduino Due, Zero only

//argument pin: the pin number

//argument ISR: the ISR to call when the interrupt occurs; this function must

take no parameters and return nothing. This function is sometimes referred to as

an interrupt service routine.

//argument mode: defines when the interrupt should be triggered.

The following three constants are predefined as valid values -

 LOW to trigger the interrupt whenever the pin is low.

 CHANGE to trigger the interrupt whenever the pin changes value.

 FALLING whenever the pin goes from high to low.

Arduino

114

Example

int pin = 2; //define interrupt pin to 2

volatile int state = LOW; // To make sure variables shared between an ISR

//the main program are updated correctly,declare them as volatile.

void setup() {

pinMode(13, OUTPUT); //set pin 13 as output

attachInterrupt(digitalPinToInterrupt(pin), blink, CHANGE);

//interrupt at pin 2 blink ISR when pin to change the value

}

void loop() {

digitalWrite(13, state); //pin 13 equal the state value

}

void blink() { //ISR function

state = !state; //toggle the state when the interrupt occurs

}

Arduino

115

Hundreds of communication protocols have been defined to achieve this data exchange.

Each protocol can be categorized into one of the two categories: parallel or serial.

Parallel Communication

Parallel connection between the Arduino and peripherals via input/output ports is the ideal

solution for shorter distances up to several meters. However, in other cases when it is

necessary to establish communication between two devices for longer distances it is not

possible to use parallel connection. Parallel interfaces transfer multiple bits at the same

time. They usually require buses of data - transmitting across eight, sixteen, or more

wires. Data is transferred in huge, crashing waves of 1’s and 0’s.

Advantages and Drawbacks of Parallel Communication

Parallel communication certainly has its advantages. It is faster than serial,

straightforward, and relatively easy to implement. However, it requires many input/output

(I/O) ports and lines. If you have ever had to move a project from a basic Arduino Uno to

a Mega, you know that the I/O lines on a microprocessor can be precious and few.

Therefore, we prefer serial communication, sacrificing potential speed for pin real estate.

Serial Communication Modules

Today, most Arduino boards are built with several different systems for serial

communication as standard equipment.

Which of these systems are used depends on the following factors -

 How many devices the microcontroller has to exchange data with?

 How fast the data exchange has to be?

 What is the distance between these devices?

 Arduino – Communication

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11061

Arduino

116

 Is it necessary to send and receive data simultaneously?

One of the most important things concerning serial communication is the Protocol, which

should be strictly observed. It is a set of rules, which must be applied such that the devices

can correctly interpret data they mutually exchange. Fortunately, Arduino automatically

takes care of this, so that the work of the programmer/user is reduced to simple write

(data to be sent) and read (received data).

Types of Serial Communications

Serial communication can be further classified as –

 Synchronous - Devices that are synchronized use the same clock and their timing

is in synchronization with each other.

 Asynchronous - Devices that are asynchronous have their own clocks and are

triggered by the output of the previous state.

It is easy to find out if a device is synchronous or not. If the same clock is given to all the

connected devices, then they are synchronous. If there is no clock line, it is asynchronous.

For example, UART (Universal Asynchronous Receiver Transmitter) module is

asynchronous.

The asynchronous serial protocol has a number of built-in rules. These rules are nothing

but mechanisms that help ensure robust and error-free data transfers. These mechanisms,

which we get for eschewing the external clock signal, are:

 Synchronization bits

 Data bits

 Parity bits

 Baud rate

Synchronization Bits

The synchronization bits are two or three special bits transferred with each packet of data.

They are the start bit and the stop bit(s). True to their name, these bits mark the

beginning and the end of a packet respectively.

There is always only one start bit, but the number of stop bits is configurable to either one

or two (though it is normally left at one).

The start bit is always indicated by an idle data line going from 1 to 0, while the stop bit(s)

will transition back to the idle state by holding the line at 1.

Arduino

117

Data Bits

The amount of data in each packet can be set to any size from 5 to 9 bits. Certainly, the

standard data size is your basic 8-bit byte, but other sizes have their uses. A 7-bit data

packet can be more efficient than 8, especially if you are just transferring 7-bit ASCII

characters.

Parity Bits

The user can select whether there should be a parity bit or not, and if yes, whether the

parity should be odd or even. The parity bit is 0 if the number of 1’s among the data bits

is even. Odd parity is just the opposite.

Baud Rate

The term baud rate is used to denote the number of bits transferred per second [bps].

Note that it refers to bits, not bytes. It is usually required by the protocol that each byte

is transferred along with several control bits. It means that one byte in serial data stream

may consist of 11 bits. For example, if the baud rate is 300 bps then maximum 37 and

minimum 27 bytes may be transferred per second.

Arduino UART

The following code will make Arduino send hello world when it starts up.

void setup()

{

Serial.begin(9600); //set up serial library baud rate to 9600

Serial.println("hello world"); //print hello world

}

void loop()

{

}

After the Arduino sketch has been uploaded to Arduino, open the Serial monitor at the

top right section of Arduino IDE.

Type anything into the top box of the Serial Monitor and press send or enter on your

keyboard. This will send a series of bytes to the Arduino.

The following code returns whatever it receives as an input.

Arduino

118

The following code will make Arduino deliver output depending on the input provided.

void setup()

{

Serial.begin(9600); //set up serial library baud rate to 9600

}

void loop()

{

 if(Serial.available()) //if number of bytes (characters) available for reading

from

 { serial port

 Serial.print("I received:"); //print I received

 Serial.write(Serial.read()); //send what you read

 }

}

Notice that Serial.print and Serial.println will send back the actual ASCII code, whereas

Serial.write will send back the actual text. See ASCII codes for more information.

http://www.asciitable.com/

Arduino

119

Inter-integrated circuit (I2C) is a system for serial data exchange between the

microcontrollers and specialized integrated circuits of a new generation. It is used when

the distance between them is short (receiver and transmitter are usually on the same

printed board). Connection is established via two conductors. One is used for data transfer

and the other is used for synchronization (clock signal).

As seen in the following figure, one device is always a master. It performs addressing of

one slave chip before the communication starts. In this way, one microcontroller can

communicate with 112 different devices. Baud rate is usually 100 Kb/sec (standard mode)

or 10 Kb/sec (slow baud rate mode). Systems with the baud rate of 3.4 Mb/sec have

recently appeared. The distance between devices, which communicate over an I2C bus is

limited to several meters.

Board I2C Pins

The I2C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the

data signal. The current bus master always generates the clock signal. Some slave devices

may force the clock low at times to delay the master sending more data (or to require

more time to prepare data before the master attempts to clock it out). This is known as

“clock stretching”.

Following are the pins for different Arduino boards -

 Uno, Pro Mini A4 (SDA), A5 (SCL)

 Mega, Due 20 (SDA), 21 (SCL)

 Leonardo, Yun 2 (SDA), 3 (SCL)

Arduino I2C

We have two modes - master code and slave code - to connect two Arduino boards using

I2C. They are:

 Master Transmitter / Slave Receiver

 Master Receiver / Slave Transmitter

 Arduino – Inter Integrated Circuit

Arduino

120

Master Transmitter / Slave Receiver

Let us now see what is master transmitter and slave receiver.

Master Transmitter

The following functions are used to initialize the Wire library and join the I2C bus as a

master or slave. This is normally called only once.

 Wire.begin(address) – Address is the 7-bit slave address in our case as the

master is not specified and it will join the bus as a master.

 Wire.beginTransmission(address) – Begin a transmission to the I2C slave

device with the given address.

 Wire.write(value) – Queues bytes for transmission from a master to slave device

(in-between calls to beginTransmission() and endTransmission()).

 Wire.endTransmission() – Ends a transmission to a slave device that was begun

by beginTransmission() and transmits the bytes that were queued by wire.write().

Example

#include <Wire.h> //include wire library

void setup() //this will run only once

{

 Wire.begin(); // join i2c bus as master

}

short age = 0;

void loop()

{

 Wire.beginTransmission(2); // transmit to device #2

 Wire.write("age is=");

 Wire.write(age); // sends one byte

 Wire.endTransmission(); // stop transmitting

 delay(1000);

}

Slave Receiver

The following functions are used –

 Wire.begin(address) – Address is the 7-bit slave address.

 Wire.onReceive(received data handler) – Function to be called when a slave

device receives data from the master.

 Wire.available() – Returns the number of bytes available for retrieval

with Wire.read().This should be called inside the Wire.onReceive() handler.

Arduino

121

Example

#include <Wire.h> //include wire library

void setup() //this will run only once

{

 Wire.begin(2); // join i2c bus with address #2

 Wire.onReceive(receiveEvent); // call receiveEvent when the master send any

thing

 Serial.begin(9600); // start serial for output to print what we

receive

}

void loop()

{

 delay(250);

}

//-----this function will execute whenever data is received from master-----//

void receiveEvent(int howMany)

{

 while (Wire.available()>1) // loop through all but the last

 {

 char c = Wire.read(); // receive byte as a character

 Serial.print(c); // print the character

 }

}

Master Receiver / Slave Transmitter

Let us now see what is master receiver and slave transmitter.

Master Receiver

The Master, is programmed to request, and then read bytes of data that are sent from the

uniquely addressed Slave Arduino.

The following function is used:

Wire.requestFrom(address,number of bytes) – Used by the master to request bytes

from a slave device. The bytes may then be retrieved with the functions

wire.available() and wire.read() functions.

Arduino

122

Example

#include <Wire.h> //include wire library void setup()

{

 Wire.begin(); // join i2c bus (address optional for master)

 Serial.begin(9600); // start serial for output

}

void loop()

{

 Wire.requestFrom(2, 1); // request 1 bytes from slave device #2

 while (Wire.available()) // slave may send less than requested

 {

 char c = Wire.read(); // receive a byte as character

 Serial.print(c); // print the character

 }

 delay(500);

}

Slave Transmitter

The following function is used.

Wire.onRequest(handler) – A function is called when a master requests data from this

slave device.

Example

#include <Wire.h>

void setup()

{

 Wire.begin(2); // join i2c bus with address #2

 Wire.onRequest(requestEvent); // register event

}

Byte x=0;

void loop() {

 delay(100);

}

// function that executes whenever data is requested by master

// this function is registered as an event, see setup()

void requestEvent()

{

 Wire.write(x); // respond with message of 1 bytes as expected by master

x++;

}

Arduino

123

A Serial Peripheral Interface (SPI) bus is a system for serial communication, which uses

up to four conductors, commonly three. One conductor is used for data receiving, one for

data sending, one for synchronization and one alternatively for selecting a device to

communicate with. It is a full duplex connection, which means that the data is sent and

received simultaneously. The maximum baud rate is higher than that in the I2C

communication system.

Board SPI Pins

SPI uses the following four wires:

 SCK: This is the serial clock driven by the master.

 MOSI: This is the master output / slave input driven by the master.

 MISO: This is the master input / slave output driven by the master.

 SS: This is the slave-selection wire.

The following functions are used. You have to include the SPI.h.

 SPI.begin() - Initializes the SPI bus by setting SCK, MOSI, and SS to outputs,

pulling SCK and MOSI low, and SS high.

 SPI.setClockDivider(divider) – To set the SPI clock divider relative to the

system clock. On AVR based boards, the dividers available are 2, 4, 8, 16, 32, 64

or 128. The default setting is SPI_CLOCK_DIV4, which sets the SPI clock to one-

quarter of the frequency of the system clock (5 Mhz for the boards at 20 MHz).

 Divider: It could be (SPI_CLOCK_DIV2, SPI_CLOCK_DIV4, SPI_CLOCK_DIV8,

SPI_CLOCK_DIV16, SPI_CLOCK_DIV32, SPI_CLOCK_DIV64,

SPI_CLOCK_DIV128).

 SPI.transfer(val) – SPI transfer is based on a simultaneous send and receive:

the received data is returned in receivedVal.

 SPI.beginTransaction(SPISettings(speedMaximum, dataOrder,

dataMode)) – speedMaximum is the clock, dataOrder(MSBFIRST or LSBFIRST),

dataMode(SPI_MODE0, SPI_MODE1, SPI_MODE2, or SPI_MODE3).

We have four modes of operation in SPI as follows -

 Mode 0 (the default) - Clock is normally low (CPOL = 0), and the data is sampled

on the transition from low to high (leading edge) (CPHA = 0).

 Mode 1 - Clock is normally low (CPOL = 0), and the data is sampled on the

transition from high to low (trailing edge) (CPHA = 1).

 Arduino – Serial Peripheral Interface

Arduino

124

 Mode 2 - Clock is normally high (CPOL = 1), and the data is sampled on the

transition from high to low (leading edge) (CPHA = 0).

 Mode 3 - Clock is normally high (CPOL = 1), and the data is sampled on the

transition from low to high (trailing edge) (CPHA = 1).

 SPI.attachInterrupt(handler) – Function to be called when a slave device

receives data from the master.

Now, we will connect two Arduino UNO boards together; one as a master and the other as

a slave.

 (SS) : pin 10

 (MOSI) : pin 11

 (MISO) : pin 12

 (SCK) : pin 13

The ground is common. Following is the diagrammatic representation of the connection

between both the boards -

Let us see examples of SPI as Master and SPI as Slave.

SPI as MASTER

Example

#include <SPI.h>

void setup (void)

{

 Serial.begin(115200); //set baud rate to 115200 for usart

Arduino

125

 digitalWrite(SS, HIGH); // disable Slave Select

 SPI.begin ();

 SPI.setClockDivider(SPI_CLOCK_DIV8);//divide the clock by 8

}

void loop (void)

{

 char c;

 digitalWrite(SS, LOW); // enable Slave Select

 // send test string

 for (const char * p = "Hello, world!\r" ; c = *p; p++) {

 SPI.transfer (c);

 Serial.print(c);

 }

digitalWrite(SS, HIGH); // disable Slave Select

delay(2000);

}

SPI as SLAVE

Example

#include <SPI.h>

char buff [50];

volatile byte indx;

volatile boolean process;

void setup (void)

{

 Serial.begin (115200);

 pinMode(MISO, OUTPUT); // have to send on master in so it set as output

 SPCR |= _BV(SPE); // turn on SPI in slave mode

 indx = 0; // buffer empty

 process = false;

 SPI.attachInterrupt(); // turn on interrupt

}

ISR (SPI_STC_vect) // SPI interrupt routine

{ byte c = SPDR; // read byte from SPI Data Register

Arduino

126

 if (indx < sizeof buff)

 {

 buff [indx++] = c; // save data in the next index in the array buff

 if (c == '\r') // check for the end of the word

 process = true;

 }

}

void loop (void)

{

 if (process)

 {

 process = false; // reset the process

 Serial.println (buff); // print the array on serial monitor

 indx= 0; // reset button to zero

 }

}

Arduino

127

Arduino – Projects

Arduino

128

LEDs are small, powerful lights that are used in many different applications. To start, we

will work on blinking an LED, the Hello World of microcontrollers. It is as simple as turning

a light on and off. Establishing this important baseline will give you a solid foundation as

we work towards experiments that are more complex.

Components Required

You will need the following components -

 1x Breadboard

 1x Arduino Uno R3

 1x LED

 1x 330Ω Resistor

 2x Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

 Arduino – Blinking LED

Arduino

129

Note: To find out the polarity of an LED, look at it closely. The shorter of the two legs,

towards the flat edge of the bulb indicates the negative terminal.

Components like resistors need to have their terminals bent into 90° angles in order to fit

the breadboard sockets properly. You can also cut the terminals shorter.

Arduino

130

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open the new sketch File by clicking New.

Arduino Code

/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 */

// the setup function runs once when you press reset or power the board

void setup()

{

 // initialize digital pin 13 as an output.

 pinMode(2, OUTPUT);

}

// the loop function runs over and over again forever

void loop()

 {

 digitalWrite(2, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(2, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

 }

Arduino

131

Code to Note

pinMode(2, OUTPUT) - Before you can use one of Arduino’s pins, you need to tell Arduino

Uno R3 whether it is an INPUT or OUTPUT. We use a built-in “function” called pinMode() to

do this.

digitalWrite(2, HIGH) - When you are using a pin as an OUTPUT, you can command it

to be HIGH (output 5 volts), or LOW (output 0 volts).

Result

You should see your LED turn on and off. If the required output is not seen, make sure

you have assembled the circuit correctly, and verified and uploaded the code to your

board.

Arduino

132

This example demonstrates the use of the analogWrite() function in fading an LED off.

AnalogWrite uses pulse width modulation (PWM), turning a digital pin on and off very

quickly with different ratios between on and off, to create a fading effect.

Components Required

You will need the following components-

 1x Breadboard

 1x Arduino Uno R3

 1x LED

 1x 330Ω Resistor

 2x Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

 Arduino – Fading LED

Arduino

133

Note: To find out the polarity of an LED, look at it closely. The shorter of the two legs

towards the flat edge of the bulb indicates the negative terminal.

Components like resistors need to have their terminals bent into 90° angles in order to fit

the breadboard sockets properly. You can also cut the terminals shorter.

Arduino

134

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking on New.

Arduino Code

/*

 Fade

 This example shows how to fade an LED on pin 9

 using the analogWrite() function.

 The analogWrite() function uses PWM, so if you want to change the pin you're

using, be

 sure to use another PWM capable pin. On most Arduino, the PWM pins are identified

with

 a "~" sign, like ~3, ~5, ~6, ~9, ~10 and ~11.

 */

int led = 9; // the PWM pin the LED is attached to

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

Arduino

135

// the setup routine runs once when you press reset:

void setup()

{

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop()

 {

 // set the brightness of pin 9:

 analogWrite(led, brightness);

 // change the brightness for next time through the loop:

 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:

 if (brightness == 0 || brightness == 255)

 {

 fadeAmount = -fadeAmount ;

 }

 // wait for 30 milliseconds to see the dimming effect

 delay(300);

}

Code to Note

After declaring pin 9 as your LED pin, there is nothing to do in the setup() function of your

code. The analogWrite() function that you will be using in the main loop of your code

requires two arguments: One, telling the function which pin to write to and the other

indicating what PWM value to write.

In order to fade the LED off and on, gradually increase the PWM values from 0 (all the way

off) to 255 (all the way on), and then back to 0, to complete the cycle. In the sketch given

above, the PWM value is set using a variable called brightness. Each time through the

loop, it increases by the value of the variable fadeAmount.

If brightness is at either extreme of its value (either 0 or 255), then fadeAmount is changed

to its negative. In other words, if fadeAmount is 5, then it is set to -5. If it is -5, then it is

set to 5. The next time through the loop, this change causes brightness to change direction

as well.

Arduino

136

analogWrite() can change the PWM value very fast, so the delay at the end of the sketch

controls the speed of the fade. Try changing the value of the delay and see how it changes

the fading effect.

Result

You should see your LED brightness change gradually.

Arduino

137

This example will show you how to read an analog input on analog pin 0. The input is

converted from analogRead() into voltage, and printed out to the serial monitor of the

Arduino Software (IDE).

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x 5K variable resistor (potentiometer)

 2x Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

Potentiometer

A potentiometer (or pot) is a simple electro-mechanical transducer. It converts rotary or

linear motion from the input operator into a change of resistance. This change is (or can

be) used to control anything from the volume of a hi-fi system to the direction of a huge

container ship.

 Arduino – Reading Analog Voltage

Arduino

138

The pot as we know it was originally known as a rheostat (essentially a variable wirewound

resistor). The variety of available pots is now quite astonishing, and it can be very difficult

for the beginner (in particular) to work out which type is suitable for a given task. A few

different pot types, which can all be used for the same task makes the job harder.

The image on the left shows the standard schematic symbol of a pot. The image on the

right is the potentiometer.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

139

Arduino Code

/*

 ReadAnalogVoltage

 Reads an analog input on pin 0, converts it to voltage, and prints the result

to the serial monitor.

 Graphical representation is available using serial plotter (Tools > Serial

Plotter menu)

 Attach the center pin of a potentiometer to pin A0, and the outside pins to

+5V and ground.

*/

// the setup routine runs once when you press reset:

void setup()

{

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// the loop routine runs over and over again forever:

void loop()

{

 // read the input on analog pin 0:

 int sensorValue = analogRead(A0);

 // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):

 float voltage = sensorValue * (5.0 / 1023.0);

 // print out the value you read:

 Serial.println(voltage);

}

Code to Note

In the program or sketch given below, the first thing that you do in the setup function is

begin serial communications, at 9600 bits per second, between your board and your

computer with the line:

Serial.begin(9600);

In the main loop of your code, you need to establish a variable to store the resistance

value (which will be between 0 and 1023, perfect for an int datatype) coming from your

potentiometer:

Arduino

140

int sensorValue = analogRead(A0);

To change the values from 0-1023 to a range that corresponds to the voltage, the pin is

reading, you need to create another variable, a float, and do a little calculation. To scale

the numbers between 0.0 and 5.0, divide 5.0 by 1023.0 and multiply that by sensorValue:

float voltage= sensorValue * (5.0 / 1023.0);

Finally, you need to print this information to your serial window. You can do this with the

command Serial.println() in your last line of code:

Serial.println(voltage)

Now, open Serial Monitor in the Arduino IDE by clicking the icon on the right side of the

top green bar or pressing Ctrl+Shift+M.

Result

You will see a steady stream of numbers ranging from 0.0 - 5.0. As you turn the pot, the

values will change, corresponding to the voltage at pin A0.

Arduino

141

This example shows you how to read an analog input at analog pin 0, convert the values

from analogRead() into voltage, and print it out to the serial monitor of the Arduino

Software (IDE).

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x 5k ohm variable resistor (potentiometer)

 2x Jumper

 8x LED or you can use (LED bar graph display as shown in the image below)

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

 Arduino – LED Bar Graph

Arduino

142

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

143

10 Segment LED Bar Graph

These 10-segment bar graph LEDs have many uses. With a compact footprint, simple

hookup, they are easy for prototype or finished products. Essentially, they are 10 individual

blue LEDs housed together, each with an individual anode and cathode connection.

They are also available in yellow, red, and green colors.

Note: The pin out on these bar graphs may vary from what is listed on the datasheet.

Rotating the device 180 degrees will correct the change, making pin 11 the first pin in line.

Arduino Code

/*

 LED bar graph

Turns on a series of LEDs based on the value of an analog sensor. This is a

simple way to make a bar graph display. Though this graph uses 8LEDs, you can

use any number by changing the LED count and the pins in the array.

This method can be used to control any series of digital outputs that depends on

an analog input.

 */

// these constants won't change:

const int analogPin = A0; // the pin that the potentiometer is attached to

const int ledCount = 8; // the number of LEDs in the bar graph

int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9}; // an array of pin numbers to which

LEDs are attached

void setup()

{

 // loop over the pin array and set them all to output:

Arduino

144

 for (int thisLed = 0; thisLed < ledCount; thisLed++)

 {

 pinMode(ledPins[thisLed], OUTPUT);

 }

}

void loop()

{

 // read the potentiometer:

 int sensorReading = analogRead(analogPin);

 // map the result to a range from 0 to the number of LEDs:

 int ledLevel = map(sensorReading, 0, 1023, 0, ledCount);

 // loop over the LED array:

 for (int thisLed = 0; thisLed < ledCount; thisLed++)

{

 // if the array element's index is less than ledLevel,

 // turn the pin for this element on:

 if (thisLed < ledLevel)

 {

 digitalWrite(ledPins[thisLed], HIGH);

 }

 // turn off all pins higher than the ledLevel:

 else

 {

 digitalWrite(ledPins[thisLed], LOW);

 }

 }

}

Code to Note

The sketch works like this: first, you read the input. You map the input value to the output

range, in this case ten LEDs. Then you set up a for-loop to iterate over the outputs. If

the output's number in the series is lower than the mapped input range, you turn it on. If
not, you turn it off.

Result

You will see the LED turn ON one by one when the value of analog reading increases and

turn OFF one by one while the reading is decreasing.

Arduino

145

This example uses the Keyboard library to log you out of your user session on your

computer when pin 2 on the ARDUINO UNO is pulled to ground. The sketch simulates the

keypress in sequence of two or three keys at the same time and after a short delay, it
releases them.

Warning: When you use the Keyboard.print() command, Arduino takes over your

computer's keyboard. To ensure you do not lose control of your computer while running a

sketch with this function, set up a reliable control system before you call Keyboard.print().

This sketch is designed to only send a Keyboard command after a pin has been pulled to
ground.

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Leonardo, Micro, or Due board

 1x pushbutton

 1x Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image below.

 Arduino – Keyboard Logout

Arduino

146

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

For this example, you need to use Arduino IDE 1.6.7

Note: You must include the keyboard library in your Arduino library file. Copy and paste

the keypad library file inside the file with the name libraries (highlighted) as shown in the

following screenshot.

Arduino

147

Arduino Code

/*

 Keyboard logout

 This sketch demonstrates the Keyboard library.

 When you connect pin 2 to ground, it performs a logout.

 It uses keyboard combinations to do this, as follows:

 On Windows, CTRL-ALT-DEL followed by ALT-l

 On Ubuntu, CTRL-ALT-DEL, and ENTER

 On OSX, CMD-SHIFT-q

 To wake: Spacebar.

 Circuit:

 * Arduino Leonardo or Micro

 * wire to connect D2 to ground.

*/

#define OSX 0

#define WINDOWS 1

#define UBUNTU 2

#include "Keyboard.h"

// change this to match your platform:

int platform = WINDOWS;

void setup()

{

 // make pin 2 an input and turn on the

 // pullup resistor so it goes high unless

 // connected to ground:

 pinMode(2, INPUT_PULLUP);

 Keyboard.begin();

}

void loop()

{

 while (digitalRead(2) == HIGH) {

 // do nothing until pin 2 goes low

 delay(500);

 }

 delay(1000);

Arduino

148

 switch (platform) {

 case OSX:

 Keyboard.press(KEY_LEFT_GUI);

 // Shift-Q logs out:

 Keyboard.press(KEY_LEFT_SHIFT);

 Keyboard.press('Q');

 delay(100);

// enter:

 Keyboard.write(KEY_RETURN);

 break;

 case WINDOWS:

 // CTRL-ALT-DEL:

 Keyboard.press(KEY_LEFT_CTRL);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press(KEY_DELETE);

 delay(100);

 Keyboard.releaseAll();

 //ALT-l:

 delay(2000);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press('l');

 Keyboard.releaseAll();

 break;

 case UBUNTU:

 // CTRL-ALT-DEL:

 Keyboard.press(KEY_LEFT_CTRL);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press(KEY_DELETE);

 delay(1000);

 Keyboard.releaseAll();

 // Enter to confirm logout:

 Keyboard.write(KEY_RETURN);

 break;

 }

// do nothing:

Arduino

149

 while (true);

}

 Keyboard.releaseAll();

 // enter:

 Keyboard.write(KEY_RETURN);

 break;

 case WINDOWS:

 // CTRL-ALT-DEL:

 Keyboard.press(KEY_LEFT_CTRL);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press(KEY_DELETE);

 delay(100);

 Keyboard.releaseAll();

 //ALT-l:

 delay(2000);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press('l');

 Keyboard.releaseAll();

 break;

 case UBUNTU:

 // CTRL-ALT-DEL:

 Keyboard.press(KEY_LEFT_CTRL);

 Keyboard.press(KEY_LEFT_ALT);

 Keyboard.press(KEY_DELETE);

 delay(1000);

 Keyboard.releaseAll();

 // Enter to confirm logout:

 Keyboard.write(KEY_RETURN);

 break;

 }

// do nothing:

 while (true);

}

Arduino

150

Code to Note

Before you upload the program to your board, make sure you assign the correct OS you

are currently using to the platform variable.

While the sketch is running, pressing the button will connect pin 2 to the ground and the

board will send the logout sequence to the USB connected PC.

Result

When you connect pin 2 to the ground, it performs a logout operation.

 It uses the following keyboard combinations to logout -

 On Windows, CTRL-ALT-DEL followed by ALT-l

 On Ubuntu, CTRL-ALT-DEL, and ENTER

 On OSX, CMD-SHIFT-q

Arduino

151

In this example, when the button is pressed, a text string is sent to the computer as

keyboard input. The string reports the number of times the button is pressed. Once you

have the Leonardo programmed and wired up, open your favorite text editor to see the
results.

Warning: When you use the Keyboard.print() command, the Arduino takes over your

computer's keyboard. To ensure you do not lose control of your computer while running a

sketch with this function, set up a reliable control system before you call

Keyboard.print(). This sketch includes a pushbutton to toggle the keyboard, so that it
only runs after the button is pressed.

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Leonardo, Micro, or Due board

 1x momentary pushbutton

 1x 10k ohm resistor

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

 Arduino – Keyboard Message

Arduino

152

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino Code

/*

 Keyboard Message test For the Arduino Leonardo and Micro, Sends a text string

when a button is pressed.

 The circuit:

 * pushbutton attached from pin 4 to +5V

 * 10-kilohm resistor attached from pin 4 to ground

*/

#include "Keyboard.h"

const int buttonPin = 4; // input pin for pushbutton

int previousButtonState = HIGH; // for checking the state of a pushButton

int counter = 0; // button push counter

void setup() {

 pinMode(buttonPin, INPUT); // make the pushButton pin an input:

 Keyboard.begin(); // initialize control over the keyboard:

}

void loop() {

 int buttonState = digitalRead(buttonPin); // read the pushbutton:

 if ((buttonState != previousButtonState)&& (buttonState == HIGH)) // and it's

currently pressed:

Arduino

153

{

 // increment the button counter

 counter++;

 // type out a message

 Keyboard.print("You pressed the button ");

 Keyboard.print(counter);

 Keyboard.println(" times.");

 }

 // save the current button state for comparison next time:

 previousButtonState = buttonState;

}

Code to Note

Attach one terminal of the pushbutton to pin 4 on Arduino. Attach the other pin to 5V. Use

the resistor as a pull-down, providing a reference to the ground, by attaching it from pin
4 to the ground.

Once you have programmed your board, unplug the USB cable, open a text editor and put

the text cursor in the typing area. Connect the board to your computer through USB again

and press the button to write in the document.

Result

By using any text editor, it will display the text sent via Arduino.

Arduino

154

Using the Mouse library, you can control a computer's onscreen cursor with an Arduino
Leonardo, Micro, or Due.

This particular example uses five pushbuttons to move the onscreen cursor. Four of the

buttons are directional (up, down, left, right) and one is for a left mouse click. Cursor

movement from Arduino is always relative. Every time an input is read, the cursor's
position is updated relative to its current position.

Whenever one of the directional buttons is pressed, Arduino will move the mouse, mapping
a HIGH input to a range of 5 in the appropriate direction.

The fifth button is for controlling a left-click from the mouse. When the button is released,
the computer will recognize the event.

Components Required

 You will need the following components:

 1x Breadboard

 1x Arduino Leonardo, Micro or Due board

 5x 10k ohm resistor

 5x momentary pushbuttons

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image below.

 Arduino – Mouse Button Control

Arduino

155

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

For this example, you need to use Arduino IDE 1.6.7

Arduino Code

/*

Button Mouse Control

For Leonardo and Due boards only .Controls the mouse from five pushbuttons on an

Arduino Leonardo, Micro or Due.

Hardware:

 * 5 pushbuttons attached to D2, D3, D4, D5, D6

 The mouse movement is always relative. This sketch reads

 four pushbuttons, and uses them to set the movement of the mouse.

 WARNING: When you use the Mouse.move() command, the Arduino takes

 over your mouse! Make sure you have control before you use the mouse commands.

 */

#include "Mouse.h"

// set pin numbers for the five buttons:

const int upButton = 2;

const int downButton = 3;

Arduino

156

const int leftButton = 4;

const int rightButton = 5;

const int mouseButton = 6;

int range = 5; // output range of X or Y movement; affects movement speed

int responseDelay = 10; // response delay of the mouse, in ms

void setup()

 {

 // initialize the buttons' inputs:

 pinMode(upButton, INPUT);

 pinMode(downButton, INPUT);

 pinMode(leftButton, INPUT);

 pinMode(rightButton, INPUT);

 pinMode(mouseButton, INPUT);

// initialize mouse control:

 Mouse.begin();

}

void loop()

{

 // read the buttons:

 int upState = digitalRead(upButton);

 int downState = digitalRead(downButton);

 int rightState = digitalRead(rightButton);

 int leftState = digitalRead(leftButton);

 int clickState = digitalRead(mouseButton);

 // calculate the movement distance based on the button states:

 int xDistance = (leftState - rightState) * range;

 int yDistance = (upState - downState) * range;

 // if X or Y is non-zero, move:

 if ((xDistance != 0) || (yDistance != 0)) {

 Mouse.move(xDistance, yDistance, 0);

 }

 // if the mouse button is pressed:

 if (clickState == HIGH) {

Arduino

157

 // if the mouse is not pressed, press it:

 if (!Mouse.isPressed(MOUSE_LEFT)) {

 Mouse.press(MOUSE_LEFT);

 }

 }

 // else the mouse button is not pressed:

 else {

 // if the mouse is pressed, release it:

 if (Mouse.isPressed(MOUSE_LEFT)) {

 Mouse.release(MOUSE_LEFT);

 }

 }

 // a delay so the mouse does not move too fast:

 delay(responseDelay);

}

Code to Note

Connect your board to your computer with a micro-USB cable. The buttons are connected

to digital inputs from pins 2 to 6. Make sure you use 10k pull-down resistors.

Arduino

158

This example listens for a byte coming from the serial port. When received, the board

sends a keystroke back to the computer. The sent keystroke is one higher than what is

received, so if you send an "a" from the serial monitor, you will receive a "b" from the
board connected to the computer. A "1" will return a "2" and so on.

Warning: When you use the Keyboard.print() command, the Leonardo, Micro or Due

board takes over your computer's keyboard. To ensure you do not lose control of your

computer while running a sketch with this function, set up a reliable control system before

you call Keyboard.print(). This sketch is designed to only send a Keyboard command after
the board has received a byte over the serial port.

Components Required

You will need the following components:

 1x Arduino Leonardo, Micro, or Due board

Procedure

Just connect your board to the computer using USB cable.

 Arduino – Keyboard Serial

Arduino

159

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Notes: You must include the keypad library in your Arduino library file. Copy and paste

the keypad library file inside the file with the name ‘libraries’ highlighted with yellow color.

Arduino

160

Arduino Code

/*

 Keyboard test

For the Arduino Leonardo, Micro or Due Reads a byte from the serial port, sends

a keystroke back. The sent keystroke is one higher than what's received, e.g. if

you send a, you get b, send

A you get B, and so forth.

 The circuit:

 * none

 */

#include "Keyboard.h"

void setup() {

 // open the serial port:

 Serial.begin(9600);

 // initialize control over the keyboard:

 Keyboard.begin();

}

void loop() {

 // check for incoming serial data:

 if (Serial.available() > 0) {

 // read incoming serial data:

 char inChar = Serial.read();

 // Type the next ASCII value from what you received:

 Keyboard.write(inChar + 1);

 }

}

Code to Note

Once programed, open your serial monitor and send a byte. The board will reply with a
keystroke, that is one number higher.

Result

The board will reply with a keystroke that is one number higher on Arduino IDE serial
monitor when you send a byte.

Arduino

161

Arduino ─ Sensors

Arduino

162

In this section, we will learn how to interface our Arduino board with different sensors. We

will discuss the following sensors -

 Humidity sensor (DHT22)

 Temperature sensor (LM35)

 Water detector sensor (Simple Water Trigger)

 PIR SENSOR

 ULTRASONIC SENSOR

 GPS

Humidity Sensor (DHT22)

The DHT-22 (also named as AM2302) is a digital-output, relative humidity, and

temperature sensor. It uses a capacitive humidity sensor and a thermistor to measure the

surrounding air, and sends a digital signal on the data pin.

In this example, you will learn how to use this sensor with Arduino UNO. The room

temperature and humidity will be printed to the serial monitor.

The DHT-22 Sensor

The connections are simple. The first pin on the left to 3-5V power, the second pin to the

data input pin and the right-most pin to the ground.

 Arduino – Humidity Sensor

Arduino

163

Technical Details

 Power: 3-5V

 Max Current: 2.5mA

 Humidity: 0-100%, 2-5% accuracy

 Temperature: -40 to 80°C, ±0.5°C accuracy

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x DHT22

 1X10K ohm resistor

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image below.

Arduino

164

 Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino Code

// Example testing sketch for various DHT humidity/temperature sensors

#include "DHT.h"

#define DHTPIN 2 // what digital pin we're connected to

// Uncomment whatever type you're using!

Arduino

165

//#define DHTTYPE DHT11 // DHT 11

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

//#define DHTTYPE DHT21 // DHT 21 (AM2301)

// Connect pin 1 (on the left) of the sensor to +5V

// NOTE: If using a board with 3.3V logic like an Arduino Due connect pin 1

// to 3.3V instead of 5V!

// Connect pin 2 of the sensor to whatever your DHTPIN is

// Connect pin 4 (on the right) of the sensor to GROUND

// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor

// Initialize DHT sensor.

// Note that older versions of this library took an optional third parameter to

// tweak the timings for faster processors. This parameter is no longer needed

// as the current DHT reading algorithm adjusts itself to work on faster procs.

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(9600);

 Serial.println("DHTxx test!");

 dht.begin();

}

void loop() {

 delay(2000); // Wait a few seconds between measurements

 float h = dht.readHumidity();

 // Reading temperature or humidity takes about 250 milliseconds!

 float t = dht.readTemperature();

 // Read temperature as Celsius (the default)

 float f = dht.readTemperature(true);

 // Read temperature as Fahrenheit (isFahrenheit = true)

 // Check if any reads failed and exit early (to try again).

 if (isnan(h) || isnan(t) || isnan(f))

 {

 Serial.println("Failed to read from DHT sensor!");

 return;

Arduino

166

 }

 // Compute heat index in Fahrenheit (the default)

 float hif = dht.computeHeatIndex(f, h);

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

 Serial.print ("Humidity: ");

 Serial.print (h);

 Serial.print (" %\t");

 Serial.print ("Temperature: ");

 Serial.print (t);

 Serial.print (" *C ");

 Serial.print (f);

 Serial.print (" *F\t");

 Serial.print ("Heat index: ");

 Serial.print (hic);

 Serial.print (" *C ");

 Serial.print (hif);

 Serial.println (" *F");

}

Code to Note

DHT22 sensor has four terminals (Vcc, DATA, NC, GND), which are connected to the board

as follows:

 DATA pin to Arduino pin number 2

 Vcc pin to 5 volt of Arduino board

 GND pin to the ground of Arduino board

 We need to connect 10k ohm resistor (pull up resistor) between the DATA and the

Vcc pin

Once hardware connections are done, you need to add DHT22 library to your Arduino

library file as described earlier.

Arduino

167

Result

You will see the temperature and humidity display on serial port monitor which is updated

every 2 seconds.

Arduino

168

The Temperature Sensor LM35 series are precision integrated-circuit temperature devices
with an output voltage linearly proportional to the Centigrade temperature.

The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin,

as the user is not required to subtract a large constant voltage from the output to obtain

convenient Centigrade scaling. The LM35 device does not require any external calibration

or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a
full −55°C to 150°C temperature range.

Technical Specifications

 Calibrated directly in Celsius (Centigrade)

 Linear + 10-mV/°C scale factor

 0.5°C ensured accuracy (at 25°C)

 Rated for full −55°C to 150°C range

 Suitable for remote applications

 Arduino – Temperature Sensor

Arduino

169

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x LM35 sensor

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

170

Arduino Code

float temp;

int tempPin = 0;

void setup()

{

Serial.begin(9600);

}

void loop()

{

temp = analogRead(tempPin);

// read analog volt from sensor and save to variable temp

temp = temp * 0.48828125;

// convert the analog volt to its temperature equivalent

Serial.print("TEMPERATURE = ");

Serial.print(temp); // display temperature value

Serial.print("*C");

Serial.println();

delay(1000); // update sensor reading each one second

}

Code to Note

LM35 sensor has three terminals - Vs, Vout and GND. We will connect the sensor as

follows:

 Connect the +Vs to +5v on your Arduino board.

 Connect Vout to Analog0 or A0 on Arduino board.

 Connect GND with GND on Arduino.

The Analog to Digital Converter (ADC) converts analog values into a digital approximation

based on the formula ADC Value = sample * 1024 / reference voltage (+5v). So with a
+5 volt reference, the digital approximation will be equal to input voltage * 205.

Result

You will see the temperature display on the serial port monitor which is updated every

second.

Arduino

171

Water sensor brick is designed for water detection, which can be widely used in sensing

rainfall, water level, and even liquid leakage.

Connecting a water sensor to an Arduino is a great way to detect a leak, spill, flood, rain,

etc. It can be used to detect the presence, the level, the volume and/or the absence of

water. While this could be used to remind you to water your plants, there is a better Grove

sensor for that. The sensor has an array of exposed traces, which read LOW when water
is detected.

In this chapter, we will connect the water sensor to Digital Pin 8 on Arduino, and will enlist

the very handy LED to help identify when the water sensor comes into contact with a

source of water.

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x Water Sensor

 1x led

 1x 330 ohm resistor

 Arduino – Water Detector / Sensor

Arduino

172

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in

the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking on New.

Arduino

173

Arduino Code

#define Grove_Water_Sensor 8 // Attach Water sensor to Arduino Digital Pin 8

#define LED 9 // Attach an LED to Digital Pin 9 (or use onboard LED)

void setup()

{

 pinMode(Grove_Water_Sensor, INPUT); // The Water Sensor is an Input

 pinMode(LED, OUTPUT); // The LED is an Output

}

void loop()

{

 /* The water sensor will switch LOW when water is detected.

 Get the Arduino to illuminate the LED and activate the buzzer

 when water is detected, and switch both off when no water is present

*/

 if(digitalRead(Grove_Water_Sensor) == LOW)

 {

 digitalWrite(LED,HIGH);

 }

 else

 {

 digitalWrite(LED,LOW);

 }

}

Code to Note

Water sensor has three terminals - S, Vout(+), and GND (-). Connect the sensor as

follows:

 Connect the +Vs to +5v on your Arduino board.

 Connect S to digital pin number 8 on Arduino board.

 Connect GND with GND on Arduino.

 Connect LED to digital pin number 9 in Arduino board.

When the sensor detects water, pin 8 on Arduino becomes LOW and then the LED on

Arduino is turned ON.

Result

You will see the indication LED turn ON when the sensor detects water.

Arduino

174

PIR sensors allow you to sense motion. They are used to detect whether a human has

moved in or out of the sensor’s range. They are commonly found in appliances and gadgets

used at home or for businesses. They are often referred to as PIR, "Passive Infrared",
"Pyroelectric", or "IR motion" sensors.

Following are the advantages of PIR Sensors -

 Small in size

 Wide lens range

 Easy to interface

 Inexpensive

 Low-power

 Easy to use

 Do not wear out

PIRs are made of pyroelectric sensors, a round metal can with a rectangular crystal in the

center, which can detect levels of infrared radiation. Everything emits low-level radiation,

and the hotter something is, the more radiation is emitted. The sensor in a motion detector

is split in two halves. This is to detect motion (change) and not average IR levels. The two

halves are connected so that they cancel out each other. If one-half sees more or less IR
radiation than the other, the output will swing high or low.

 Arduino – PIR Sensor

Arduino

175

PIRs have adjustable settings and have a header installed in the 3-pin ground/out/power

pads.

For many basic projects or products that need to detect when a person has left or entered

the area, PIR sensors are great. Note that PIRs do not tell you the number of people

around or their closeness to the sensor. The lens is often fixed to a certain sweep at a
distance and they are sometimes set off by the pets in the house.

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x PIR Sensor (MQ3)

Arduino

176

Procedure

Follow the circuit diagram and make the connections as shown in the image below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

Arduino

177

Arduino Code

#define pirPin 2

 int calibrationTime = 30;

 long unsigned int lowIn;

 long unsigned int pause = 5000;

 boolean lockLow = true;

 boolean takeLowTime;

 int PIRValue = 0;

 void setup()

 {

 Serial.begin(9600);

 pinMode(pirPin, INPUT);

 }

 void loop()

 {

 PIRSensor();

 }

 void PIRSensor()

 {

 if(digitalRead(pirPin) == HIGH)

 {

 if(lockLow)

 {

 PIRValue = 1;

 lockLow = false;

 Serial.println("Motion detected.");

 delay(50);

 }

 takeLowTime = true;

 }

 if(digitalRead(pirPin) == LOW)

Arduino

178

 {

 if(takeLowTime){lowIn = millis();takeLowTime = false;}

 if(!lockLow && millis() - lowIn > pause)

 {

 PIRValue = 0;

 lockLow = true;

 Serial.println("Motion ended.");

 delay(50);

 }

 }

}

Code to Note

PIR sensor has three terminals - Vcc, OUT and GND. Connect the sensor as follows:

 Connect the +Vcc to +5v on Arduino board.

 Connect OUT to digital pin 2 on Arduino board.

 Connect GND with GND on Arduino.

You can adjust the sensor sensitivity and delay time via two variable resistors located at

the bottom of the sensor board.

Once the sensor detects any motion, Arduino will send a message via the serial port to

say that a motion is detected. The PIR sense motion will delay for certain time to check if

there is a new motion. If there is no motion detected, Arduino will send a new message

saying that the motion has ended.

Result

You will see a message on your serial port if a motion is detected and another message

when the motion stops.

Arduino

179

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an object just

like the bats do. It offers excellent non-contact range detection with high accuracy and

stable readings in an easy-to-use package from 2 cm to 400 cm or 1” to 13 feet.

The operation is not affected by sunlight or black material, although acoustically, soft

materials like cloth can be difficult to detect. It comes complete with ultrasonic transmitter
and receiver module.

Technical Specifications

 Power Supply:+5V DC

 Quiescent Current: <2mA

 Working Current: 15mA

 Effectual Angle: <15°

 Ranging Distance: 2cm – 400 cm/1″ – 13ft

 Arduino – Ultrasonic Sensor

Arduino

180

 Resolution: 0.3 cm

 Measuring Angle: 30 degree

Components Required

You will need the following components:

 1x Breadboard

 1x Arduino Uno R3

 1x ULTRASONIC Sensor (HC-SR04)

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

181

Arduino Code

const int pingPin = 7; // Trigger Pin of Ultrasonic Sensor

const int echoPin = 6; // Echo Pin of Ultrasonic Sensor

void setup()

{

Serial.begin(9600); // Starting Serial Terminal

}

void loop()

{

long duration, inches, cm;

pinMode(pingPin, OUTPUT);

digitalWrite(pingPin, LOW);

delayMicroseconds(2);

digitalWrite(pingPin, HIGH);

delayMicroseconds(10);

digitalWrite(pingPin, LOW);

pinMode(echoPin, INPUT);

duration = pulseIn(echoPin, HIGH);

inches = microsecondsToInches(duration);

cm = microsecondsToCentimeters(duration);

Serial.print(inches);

Serial.print("in, ");

Serial.print(cm);

Arduino

182

Serial.print("cm");

Serial.println();

delay(100);

}

long microsecondsToInches(long microseconds)

{

return microseconds / 74 / 2;

}

long microsecondsToCentimeters(long microseconds)

{

return microseconds / 29 / 2;

}

Code to Note

The Ultrasonic sensor has four terminals - +5V, Trigger, Echo, and GND connected as

follows:

 Connect the +5V pin to +5v on your Arduino board.

 Connect Trigger to digital pin 7 on your Arduino board.

 Connect Echo to digital pin 6 on your Arduino board.

 Connect GND with GND on Arduino.

In our program, we have displayed the distance measured by the sensor in inches and cm

via the serial port.

Result

You will see the distance measured by sensor in inches and cm on Arduino serial monitor.

Arduino

183

Pushbuttons or switches connect two open terminals in a circuit. This example turns on
the LED on pin 2 when you press the pushbutton switch connected to pin 8.

Pull-down Resistor

Pull-down resistors are used in electronic logic circuits to ensure that inputs to Arduino

settle at expected logic levels if external devices are disconnected or are at high-

impedance. As nothing is connected to an input pin, it does not mean that it is a logical

zero. Pull down resistors are connected between the ground and the appropriate pin on

the device.

An example of a pull-down resistor in a digital circuit is shown in the following figure. A

pushbutton switch is connected between the supply voltage and a microcontroller pin. In

such a circuit, when the switch is closed, the micro-controller input is at a logical high

value, but when the switch is open, the pull-down resistor pulls the input voltage down to

the ground (logical zero value), preventing an undefined state at the input.

The pull-down resistor must have a larger resistance than the impedance of the logic

circuit, or else it might pull the voltage down too much and the input voltage at the pin
would remain at a constant logical low value, regardless of the switch position.

 Arduino – Connecting Switch

Arduino

184

Components Required

You will need the following components:

 1x Arduino UNO board

 1x330 ohm resistor

 1x 4.7K ohm resistor (pull down)

 1x LED

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Arduino

185

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking on New.

Arduino Code

// constants won't change. They're used here to

// set pin numbers:

const int buttonPin = 8; // the number of the pushbutton pin

const int ledPin = 2; // the number of the LED pin

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

void setup()

{

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

 // initialize the pushbutton pin as an input:

 pinMode(buttonPin, INPUT);

}

void loop()

{

 // read the state of the pushbutton value:

 buttonState = digitalRead(buttonPin);

Arduino

186

 // check if the pushbutton is pressed.

 // if it is, the buttonState is HIGH:

 if (buttonState == HIGH) {

 // turn LED on:

 digitalWrite(ledPin, HIGH);

 } else {

 // turn LED off:

 digitalWrite(ledPin, LOW);

 }

}

Code to Note

When the switch is open, (pushbutton is not pressed), there is no connection between the

two terminals of the pushbutton, so the pin is connected to the ground (through the pull-

down resistor) and we read a LOW. When the switch is closed (pushbutton is pressed), it

makes a connection between its two terminals, connecting the pin to 5 volts, so that we
read a HIGH.

Result

LED is turned ON when the pushbutton is pressed and OFF when it is released.

Arduino

187

Arduino ─ Motor Control

Arduino

188

In this chapter, we will interface different types of motors with the Arduino board (UNO)

and show you how to connect the motor and drive it from your board.

There are three different type of motors -

 DC motor

 Servo motor

 Stepper motor

A DC motor (Direct Current motor) is the most common type of motor. DC motors normally

have just two leads, one positive and one negative. If you connect these two leads directly

to a battery, the motor will rotate. If you switch the leads, the motor will rotate in the
opposite direction.

Warning: Do not drive the motor directly from Arduino board pins. This may damage the

board. Use a driver Circuit or an IC.

We will divide this chapter into three parts-

 Just make your motor spin

 Control motor speed

 Control the direction of the spin of DC motor

Components Required

You will need the following components:

 1x Arduino UNO board

 1x PN2222 Transistor

 Arduino – DC Motor

Arduino

189

 1x Small 6V DC Motor

 1x 1N4001 diode

 1x 270 Ω Resistor

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Precautions

Take the following precautions while making the connections.

 First, make sure that the transistor is connected in the right way. The flat side of

the transistor should face the Arduino board as shown in the arrangement.

 Second, the striped end of the diode should be towards the +5V power line

according to the arrangement shown in the image.

Spin ControlArduino Code

int motorPin = 3;

 void setup()

{

 pinMode(motorPin, OUTPUT);

Arduino

190

}

 void loop()

{

 digitalWrite(motorPin, HIGH);

}

Code to Note

The transistor acts like a switch, controlling the power to the motor. Arduino pin 3 is used
to turn the transistor on and off and is given the name 'motorPin' in the sketch.

Result

Motor will spin in full speed when the Arduino pin number 3 goes high.

Motor Speed Control

Following is the schematic diagram of a DC motor, connected to the Arduino board.

Arduino Code

int motorPin = 9;

 void setup()

{

 pinMode(motorPin, OUTPUT);

 Serial.begin(9600);

 while (! Serial);

Arduino

191

 Serial.println("Speed 0 to 255");

}

 void loop()

{

 if (Serial.available())

 {

 int speed = Serial.parseInt();

 if (speed >= 0 && speed <= 255)

 {

 analogWrite(motorPin, speed);

 }

 }

}

Code to Note

The transistor acts like a switch, controlling the power of the motor. Arduino pin 3 is used
to turn the transistor on and off and is given the name 'motorPin' in the sketch.

When the program starts, it prompts you to give the values to control the speed of the
motor. You need to enter a value between 0 and 255 in the Serial Monitor.

In the 'loop' function, the command 'Serial.parseInt' is used to read the number entered

as text in the Serial Monitor and convert it into an 'int'. You can type any number here.

The 'if' statement in the next line simply does an analog write with this number, if the
number is between 0 and 255.

Result

The DC motor will spin with different speeds according to the value (0 to 250) received
via the serial port.

Arduino

192

Spin Direction Control

To control the direction of the spin of DC motor, without interchanging the leads, you can

use a circuit called an H-Bridge. An H-bridge is an electronic circuit that can drive the

motor in both directions. H-bridges are used in many different applications. One of the

most common application is to control motors in robots. It is called an H-bridge because

it uses four transistors connected in such a way that the schematic diagram looks like an
"H."

We will be using the L298 H-Bridge IC here. The L298 can control the speed and direction

of DC motors and stepper motors, and can control two motors simultaneously. Its current

rating is 2A for each motor. At these currents, however, you will need to use heat sinks.

Components Required

You will need the following components:

 1 x L298 bridge IC

 1 x DC motor

 1 x Arduino UNO

 1 x breadboard

 10 x jumper wires

Arduino

193

Procedure

Following is the schematic diagram of the DC motor interface to Arduino Uno board.

The above diagram shows how to connect the L298 IC to control two motors. There are

three input pins for each motor, Input1 (IN1), Input2 (IN2), and Enable1 (EN1) for Motor1
and Input3, Input4, and Enable2 for Motor2.

Since we will be controlling only one motor in this example, we will connect the Arduino

to IN1 (pin 5), IN2 (pin 7), and Enable1 (pin 6) of the L298 IC. Pins 5 and 7 are digital,

i.e. ON or OFF inputs, while pin 6 needs a pulse-width modulated (PWM) signal to control
the motor speed.

The following table shows which direction the motor will turn based on the digital values
of IN1 and IN2.

IN1 IN2 Motor Behavior

 BRAKE

1 FORWARD

 1 BACKWARD

1 1 BRAKE

Pin IN1 of the IC L298 is connected to pin 8 of Arduino while IN2 is connected to pin 9.

These two digital pins of Arduino control the direction of the motor. The EN A pin of IC is

connected to the PWM pin 2 of Arduino. This will control the speed of the motor.

To set the values of Arduino pins 8 and 9, we have used the digitalWrite() function, and

to set the value of pin 2, we have to use the analogWrite() function.

Arduino

194

Connection Steps

 Connect 5V and the ground of the IC to 5V and the ground of Arduino, respectively.

 Connect the motor to pins 2 and 3 of the IC.

 Connect IN1 of the IC to pin 8 of Arduino.

 Connect IN2 of the IC to pin 9 of Arduino.

 Connect EN1 of IC to pin 2 of Arduino.

 Connect SENS A pin of IC to the ground.

 Connect Arduino using Arduino USB cable and upload the program to Arduino using

Arduino IDE software.

 Provide power to Arduino board using power supply, battery, or USB cable.

Arduino Code

const int pwm = 2 ; //initializing pin 2 as pwm

const int in_1 = 8 ;

const int in_2 = 9 ;

//For providing logic to L298 IC to choose the direction of the DC motor

void setup()

{

pinMode(pwm,OUTPUT) ; //we have to set PWM pin as output

pinMode(in_1,OUTPUT) ; //Logic pins are also set as output

pinMode(in_2,OUTPUT) ;

}

void loop()

{

//For Clock wise motion , in_1 = High , in_2 = Low

digitalWrite(in_1,HIGH) ;

digitalWrite(in_2,LOW) ;

analogWrite(pwm,255) ;

/* setting pwm of the motor to 255 we can change the speed of rotation

by changing pwm input but we are only using arduino so we are using highest

value to driver the motor */

Arduino

195

//Clockwise for 3 secs

delay(3000) ;

//For brake

digitalWrite(in_1,HIGH) ;

digitalWrite(in_2,HIGH) ;

delay(1000) ;

//For Anti Clock-wise motion - IN_1 = LOW , IN_2 = HIGH

digitalWrite(in_1,LOW) ;

digitalWrite(in_2,HIGH) ;

delay(3000) ;

//For brake

digitalWrite(in_1,HIGH) ;

digitalWrite(in_2,HIGH) ;

delay(1000) ;

 }

Result

The motor will run first in the clockwise (CW) direction for 3 seconds and then counter-
clockwise (CCW) for 3 seconds.

Arduino

196

A Servo Motor is a small device that has an output shaft. This shaft can be positioned to

specific angular positions by sending the servo a coded signal. As long as the coded signal

exists on the input line, the servo will maintain the angular position of the shaft. If the

coded signal changes, the angular position of the shaft changes. In practice, servos are

used in radio-controlled airplanes to position control surfaces like the elevators and
rudders. They are also used in radio-controlled cars, puppets, and of course, robots.

Servos are extremely useful in robotics. The motors are small, have built-in control

circuitry, and are extremely powerful for their size. A standard servo such as the Futaba

S-148 has 42 oz/inches of torque, which is strong for its size. It also draws power

proportional to the mechanical load. A lightly loaded servo, therefore, does not consume

much energy.

The guts of a servo motor is shown in the following picture. You can see the control

circuitry, the motor, a set of gears, and the case. You can also see the 3 wires that connect

to the outside world. One is for power (+5volts), ground, and the white wire is the control
wire.

 Arduino – Servo Motor

Arduino

197

Working of a Servo Motor

The servo motor has some control circuits and a potentiometer (a variable resistor, aka

pot) connected to the output shaft. In the picture above, the pot can be seen on the right

side of the circuit board. This pot allows the control circuitry to monitor the current angle
of the servo motor.

If the shaft is at the correct angle, then the motor shuts off. If the circuit finds that the

angle is not correct, it will turn the motor until it is at a desired angle. The output shaft of

the servo is capable of traveling somewhere around 180 degrees. Usually, it is somewhere

in the 210-degree range, however, it varies depending on the manufacturer. A normal

servo is used to control an angular motion of 0 to 180 degrees. It is mechanically not
capable of turning any farther due to a mechanical stop built on to the main output gear.

The power applied to the motor is proportional to the distance it needs to travel. So, if the

shaft needs to turn a large distance, the motor will run at full speed. If it needs to turn

only a small amount, the motor will run at a slower speed. This is called proportional
control.

How Do You Communicate the Angle at Which the Servo Should Turn?

The control wire is used to communicate the angle. The angle is determined by the duration

of a pulse that is applied to the control wire. This is called Pulse Coded Modulation. The

servo expects to see a pulse every 20 milliseconds (.02 seconds). The length of the pulse

will determine how far the motor turns. A 1.5 millisecond pulse, for example, will make

the motor turn to the 90-degree position (often called as the neutral position). If the pulse

is shorter than 1.5 milliseconds, then the motor will turn the shaft closer to 0 degrees. If
the pulse is longer than 1.5 milliseconds, the shaft turns closer to 180 degrees.

Components Required

You will need the following components:

 1x Arduino UNO board

 1x Servo Motor

Arduino

198

 1x ULN2003 driving IC

 1x 10 KΩ Resistor

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking on New.

Arduino

199

Arduino Code

/* Controlling a servo position using a potentiometer (variable resistor) */

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

void setup()

{

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop()

{

 val = analogRead(potpin);

 // reads the value of the potentiometer (value between 0 and 1023)

 val = map(val, 0, 1023, 0, 180);

 // scale it to use it with the servo (value between 0 and 180)

 myservo.write(val); // sets the servo position according to the scaled value

 delay(15);

}

Code to Note

Servo motors have three terminals - power, ground, and signal. The power wire is typically

red, and should be connected to the 5V pin on the Arduino. The ground wire is typically

black or brown and should be connected to one terminal of ULN2003 IC (10 -16). To

protect your Arduino board from damage, you will need some driver IC to do that. Here

we have used ULN2003 IC to drive the servo motor. The signal pin is typically yellow or

orange and should be connected to Arduino pin number 9.

Arduino

200

Connecting the Potentiometer

A voltage divider/potential divider are resistors in a series circuit that scale the output
voltage to a particular ratio of the input voltage applied. Following is the circuit diagram -

Vout = (Vin x R2)/ (R1 + R2)

Vout is the output potential, which depends on the applied input voltage (Vin) and resistors

(R1 and R2) in the series. It means that the current flowing through R1 will also flow through

R2 without being divided. In the above equation, as the value of R2 changes, the Vout scales
accordingly with respect to the input voltage, Vin.

Typically, a potentiometer is a potential divider, which can scale the output voltage of the

circuit based on the value of the variable resistor, which is scaled using the knob. It has
three pins: GND, Signal, and +5V as shown in the diagram below -

Result

By changing the pot’s NOP position, servo motor will change its angle.

Arduino

201

A Stepper Motor or a step motor is a brushless, synchronous motor, which divides a full

rotation into a number of steps. Unlike a brushless DC motor, which rotates continuously

when a fixed DC voltage is applied to it, a step motor rotates in discrete step angles.

The Stepper Motors therefore are manufactured with steps per revolution of 12, 24, 72,

144, 180, and 200, resulting in stepping angles of 30, 15, 5, 2.5, 2, and 1.8 degrees per

step. The stepper motor can be controlled with or without feedback.

Imagine a motor on an RC airplane. The motor spins very fast in one direction or another.

You can vary the speed with the amount of power given to the motor, but you cannot tell

the propeller to stop at a specific position.

Now imagine a printer. There are lots of moving parts inside a printer, including motors.

One such motor acts as the paper feed, spinning rollers that move the piece of paper as

ink is being printed on it. This motor needs to be able to move the paper an exact distance

to be able to print the next line of text or the next line of an image.

There is another motor attached to a threaded rod that moves the print head back and

forth. Again, that threaded rod needs to be moved an exact amount to print one letter

after another. This is where the stepper motors come in handy.

How a Stepper Motor Works?

A regular DC motor spins in only direction whereas a Stepper motor can spin in precise
increments.

Stepper motors can turn an exact amount of degrees (or steps) as desired. This gives you

total control over the motor, allowing you to move it to an exact location and hold that

position. It does so by powering the coils inside the motor for very short periods of time.

The disadvantage is that you have to power the motor all the time to keep it in the position
that you desire.

All you need to know for now is that, to move a stepper motor, you tell it to move a certain

number of steps in one direction or the other, and tell it the speed at which to step in that

direction. There are numerous varieties of stepper motors. The methods described here

can be used to infer how to use other motors and drivers which are not mentioned in this

 Arduino – Stepper Motor

Arduino

202

tutorial. However, it is always recommended that you consult the datasheets and guides
of the motors and drivers specific to the models you have.

Components Required

You will need the following components -

 1x Arduino UNO board

 1x small bipolar stepper Motor as shown in the image given below

 1x LM298 driving IC

Arduino

203

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

204

Arduino Code

/* Stepper Motor Control */

#include <Stepper.h>

const int stepsPerRevolution = 90;

// change this to fit the number of steps per revolution

// for your motor

// initialize the stepper library on pins 8 through 11:

Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {

 // set the speed at 60 rpm:

 myStepper.setSpeed(5);

 // initialize the serial port:

 Serial.begin(9600);

}

void loop() {

 // step one revolution in one direction:

 Serial.println("clockwise");

 myStepper.step(stepsPerRevolution);

 delay(500);

 // step one revolution in the other direction:

 Serial.println("counterclockwise");

 myStepper.step(-stepsPerRevolution);

 delay(500);

}}

Code to Note

This program drives a unipolar or bipolar stepper motor. The motor is attached to digital

pins 8 - 11 of Arduino.

Result

The motor will take one revolution in one direction, then one revolution in the other

direction.

Arduino

205

Arduino and Sound

Arduino

206

In this chapter, we will use the Arduino Tone Library. It is nothing but an Arduino Library,

which produces square-wave of a specified frequency (and 50% duty cycle) on any Arduino

pin. A duration can optionally be specified, otherwise the wave continues until the stop()

function is called. The pin can be connected to a piezo buzzer or a speaker to play the
tones.

Warning: Do not connect the pin directly to any audio input. The voltage is considerably

higher than the standard line level voltages, and can damage sound card inputs, etc. You

can use a voltage divider to bring the voltage down.

You MUST have a resistor in line with the speaker, or you WILL damage the controller.

Components Required

You will need the following components -

 1x 8-ohm speaker

 1x 1k resistor

 1x Arduino UNO board

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

 Arduino – Tone Library

Arduino

207

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

To make the pitches.h file, either click the button just below the serial monitor icon and

choose "New Tab", or use Ctrl+Shift+N.

Arduino

208

Then paste the following code:

/***

 * Public Constants

 ***/

#define NOTE_B0 31

#define NOTE_C1 33

#define NOTE_CS1 35

#define NOTE_D1 37

#define NOTE_DS1 39

#define NOTE_E1 41

#define NOTE_F1 44

#define NOTE_FS1 46

#define NOTE_G1 49

#define NOTE_GS1 52

#define NOTE_A1 55

#define NOTE_AS1 58

#define NOTE_B1 62

#define NOTE_C2 65

#define NOTE_CS2 69

#define NOTE_D2 73

#define NOTE_DS2 78

#define NOTE_E2 82

#define NOTE_F2 87

#define NOTE_FS2 93

#define NOTE_G2 98

#define NOTE_GS2 104

#define NOTE_A2 110

#define NOTE_AS2 117

#define NOTE_B2 123

#define NOTE_C3 131

#define NOTE_CS3 139

#define NOTE_D3 147

Arduino

209

#define NOTE_DS3 156

#define NOTE_E3 165

#define NOTE_F3 175

#define NOTE_FS3 185

#define NOTE_G3 196

#define NOTE_GS3 208

#define NOTE_A3 220

#define NOTE_AS3 233

#define NOTE_B3 247

#define NOTE_C4 262

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

#define NOTE_B5 988

#define NOTE_C6 1047

#define NOTE_CS6 1109

Arduino

210

#define NOTE_D6 1175

#define NOTE_DS6 1245

#define NOTE_E6 1319

#define NOTE_F6 1397

#define NOTE_FS6 1480

#define NOTE_G6 1568

#define NOTE_GS6 1661

#define NOTE_A6 1760

#define NOTE_AS6 1865

#define NOTE_B6 1976

#define NOTE_C7 2093

#define NOTE_CS7 2217

#define NOTE_D7 2349

#define NOTE_DS7 2489

#define NOTE_E7 2637

#define NOTE_F7 2794

#define NOTE_FS7 2960

#define NOTE_G7 3136

#define NOTE_GS7 3322

#define NOTE_A7 3520

#define NOTE_AS7 3729

#define NOTE_B7 3951

#define NOTE_C8 4186

#define NOTE_CS8 4435

#define NOTE_D8 4699

#define NOTE_DS8 4978

Save the above given code as pitches.h

Arduino Code

#include "pitches.h"

// notes in the melody:

int melody[] = {

NOTE_C4, NOTE_G3,NOTE_G3, NOTE_GS3, NOTE_G3,0, NOTE_B3, NOTE_C4};

// note durations: 4 = quarter note, 8 = eighth note, etc.:

int noteDurations[] = {

 4, 8, 8, 4,4,4,4,4 };

Arduino

211

 void setup() {

 // iterate over the notes of the melody:

 for (int thisNote = 0; thisNote < 8; thisNote++) {

 // to calculate the note duration, take one second

 // divided by the note type.

 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

 int noteDuration = 1000/noteDurations[thisNote];

 tone(8, melody[thisNote],noteDuration);

 //pause for the note's duration plus 30 ms:

 delay(noteDuration +30);

 }

}

 void loop()

{

 // no need to repeat the melody.

}

Code to Note

The code uses an extra file, pitches.h. This file contains all the pitch values for typical

notes. For example, NOTE_C4 is middle C. NOTE_FS4 is F sharp, and so forth. This note

table was originally written by Brett Hagman, on whose work the tone() command was

based. You may find it useful whenever you want to make musical notes.

Result

You will hear musical notes saved in the pitches.h. file.

Arduino

212

The wireless transmitter and receiver modules work at 315 Mhz. They can easily fit into a

breadboard and work well with microcontrollers to create a very simple wireless data link.

With one pair of transmitter and receiver, the modules will only work communicating data

one-way, however, you would need two pairs (of different frequencies) to act as a

transmitter/receiver pair.

Note: These modules are indiscriminate and receive a fair amount of noise. Both the

transmitter and receiver work at common frequencies and do not have IDs.

Receiver Module Specifications

 Product Model: MX-05V

 Operating voltage: DC5V

 Quiescent Current: 4mA

 Receiving frequency: 315Mhz

 Receiver sensitivity: -105DB

 Size: 30 * 14 * 7mm

Transmitter Module Specifications

 Product Model: MX-FS-03V

 Launch distance: 20-200 meters (different voltage, different results)

 Operating voltage: 3.5-12V

 Dimensions: 19 * 19mm

 Operating mode: AM

 Transfer rate: 4KB / S

 Transmitting power: 10mW

 Transmitting frequency: 315Mhz

 Arduino – Wireless Communication

Arduino

213

 An external antenna: 25cm ordinary multi-core or single-core line

 Pinout from left → right: (DATA; VCC; GND)

Components Required

You will need the following components-

 2x Arduino UNO board

 1x Rf link transmitter

 1x Rf link receiver

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new sketch File by clicking New.

Arduino

214

Note: You must include the keypad library in your Arduino library file. Copy and paste the

VirtualWire.lib file in the libraries folder as highlighted in the screenshot given below.

Arduino Code for Transmitter

//simple Tx on pin D12

#include <VirtualWire.h>

char *controller;

void setup() {

 pinMode(13,OUTPUT);

Arduino

215

vw_set_ptt_inverted(true);

vw_set_tx_pin(12);

vw_setup(4000);// speed of data transfer Kbps

}

void loop()

{

controller="1" ;

vw_send((uint8_t *)controller, strlen(controller));

vw_wait_tx(); // Wait until the whole message is gone

digitalWrite(13,1);

delay(2000);

controller="0" ;

vw_send((uint8_t *)controller, strlen(controller));

vw_wait_tx(); // Wait until the whole message is gone

digitalWrite(13,0);

delay(2000);

}

Code to Note

This is a simple code. First, it will send character '1' and after two seconds it will send

character '0' and so on.

Arduino Code for Receiver

 //simple Rx on pin D12

#include <VirtualWire.h>

void setup()

{

 vw_set_ptt_inverted(true); // Required for DR3100

 vw_set_rx_pin(12);

 vw_setup(4000); // Bits per sec

 pinMode(5, OUTPUT);

 vw_rx_start(); // Start the receiver PLL running

}

 void loop()

{

 uint8_t buf[VW_MAX_MESSAGE_LEN];

Arduino

216

 uint8_t buflen = VW_MAX_MESSAGE_LEN;

 if (vw_get_message(buf, &buflen)) // Non-blocking

 {

 if(buf[0]=='1'){

 digitalWrite(5,1);

 }

 if(buf[0]=='0'){

 digitalWrite(5,0);

 }

}

}

Code to Note

The LED connected to pin number 5 on the Arduino board is turned ON when character '1'

is received and turned OFF when character '0' received.

Arduino

217

The CC3000 WiFi module from Texas Instruments is a small silver package, which finally
brings easy-to-use, affordable WiFi functionality to your Arduino projects.

It uses SPI for communication (not UART!) so you can push data as fast as you want or

as slow as you want. It has a proper interrupt system with IRQ pin so you can have

asynchronous connections. It supports 802.11b/g, open/WEP/WPA/WPA2 security, TKIP &

AES. A built-in TCP/IP stack with a "BSD socket" interface supports TCP and UDP in both
the client and the server mode.

Components Required

You will need the following components:

 1xArduino Uno

 1x Adafruit CC3000 breakout board

 1x5V relay

 1xRectifier diode

 1x LED

 1X220 Ohm resistor

 1xBreadboard and some jumper wires

For this project, you just need the usual Arduino IDE, the Adafruit’s CC3000 library, and

the CC3000 MDNS library. We are also going to use the aREST library to send commands

to the relay via WiFi.

 Arduino – Network Communication

Arduino

218

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

The hardware configuration for this project is very easy.

 Connect the IRQ pin of the CC3000 board to pin number 3 of the Arduino board.

 VBAT to pin 5, and CS to pin 10.

 Connect the SPI pins to Arduino board: MOSI, MISO, and CLK to pins 11, 12, and

13, respectively.

 Vin is connected to Arduino 5V, and GND to GND.

Let us now connect the relay.

After placing the relay on the breadboard, you can start identifying the two important parts

on your relay: the coil part which commands the relay, and the switch part where we will

attach the LED.

 First, connect pin number 8 of Arduino board to one pin of the coil.

 Connect the other pin to the ground of Arduino board.

You also have to place the rectifier diode (anode connected to the ground pin) over the

pins of the coil to protect your circuit when the relay is switching.

 Connect the +5V of Arduino board to the common pin of the relay’s switch.

Arduino

219

 Finally, connect one of the other pin of the switch (usually, the one which is not

connected when the relay is off) to the LED in series with the 220 Ohm resistor,

and connect the other side of the LED to the ground of Arduino board.

Testing Individual Components

You can test the relay with the following sketch:

const int relay_pin = 8; // Relay pin

 void setup()

 {

 Serial.begin(9600);

 pinMode(relay_pin,OUTPUT);

 }

 void loop()

 {

 // Activate relay

 digitalWrite(relay_pin, HIGH);

 // Wait for 1 second

 delay(1000);

 // Deactivate relay

 digitalWrite(relay_pin, LOW);

 // Wait for 1 second

 delay(1000);

 }

Code to Note

The code is self-explanatory. You can just upload it to the board and the relay will switch

states every second, and the LED will switch ON and OFF accordingly.

Adding WiFi Connectivity

Let us now control the relay wirelessly using the CC3000 WiFi chip. The software for this

project is based on the TCP protocol. However, for this project, Arduino board will be

running a small web server, so we can “listen” for commands coming from the computer.

We will first take care of Arduino sketch, and then we will see how to write the server-side
code and create a nice interface.

First, the Arduino sketch. The goal here is to connect to your WiFi network, create a web

server, check if there are incoming TCP connections, and then change the state of the
relay accordingly.

Arduino

220

Important Parts of the Code

#include <Adafruit_CC3000.h>

 #include <SPI.h>

 #include <CC3000_MDNS.h>

 #include <Ethernet.h>

 #include <aREST.h>

You need to define inside the code what is specific to your configuration, i.e. Wi-Fi name

and password, and the port for TCP communications (we have used 80 here).

// WiFi network (change with your settings!)

 #define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!

 #define WLAN_PASS "yourPassword"

 #define WLAN_SECURITY WLAN_SEC_WPA2 // This can be WLAN_SEC_UNSEC,

WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2

 // The port to listen for incoming TCP connections

 #define LISTEN_PORT 80

We can then create the CC3000 instance, server and aREST instance:

// Server instance

 Adafruit_CC3000_Server restServer(LISTEN_PORT); // DNS responder instance

 MDNSResponder mdns; // Create aREST instance

 aREST rest = aREST();

In the setup() part of the sketch, we can now connect the CC3000 chip to the network:

cc3000.connectToAP(WLAN_SSID, WLAN_PASS, WLAN_SECURITY);

How will the computer know where to send the data? One way would be to run the sketch

once, then get the IP address of the CC3000 board, and modify the server code again.

However, we can do better, and that is where the CC3000 MDNS library comes into play.

We will assign a fixed name to our CC3000 board with this library, so we can write down

this name directly into the server code.

This is done with the following piece of code:

if (!mdns.begin("arduino", cc3000))

{

 while(1);

}

Arduino

221

We also need to listen for incoming connections.

restServer.begin();

Next, we will code the loop() function of the sketch that will be continuously executed. We

first have to update the mDNS server.

mdns.update();

The server running on Arduino board will wait for the incoming connections and handle

the requests.

Adafruit_CC3000_ClientRef client = restServer.available();

rest.handle(client);

It is now quite easy to test the projects via WiFi. Make sure you updated the sketch with

your own WiFi name and password, and upload the sketch to your Arduino board. Open

your Arduino IDE serial monitor, and look for the IP address of your board.

Let us assume for the rest here that it is something like 192.168.1.103.

Then, simply go to your favorite web browser, and type:

192.168.1.103/digital/8/1

You should see that your relay automatically turns ON.

Building the Relay Interface

We will now code the interface of the project. There will be two parts here: an HTML file

containing the interface, and a client-side Javascript file to handle the clicks on the

interface. The interface here is based on the aREST.js project, which was made to easily

control WiFi devices from your computer.

Let us first see the HTML file, called interface.html. The first part consists importing all the

required libraries for the interface:

<head>

<meta charset=utf-8 />

<title> Relay Control </title>

<link rel="stylesheet" type="text/css"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css">

 <link rel="stylesheet" type="text/css" href="style.css">

 <script type="text/javascript" src="https://code.jquery.com/jquery-

2.1.4.min.js"></script>

 <script type="text/javascript"

src="https://cdn.rawgit.com/Foliotek/AjaxQ/master/ajaxq.js"></script>

 <script type="text/javascript"

src="https://cdn.rawgit.com/marcoschwartz/aREST.js/master/aREST.js"></script>

 <script type="text/javascript" src="script.js"></script>

Arduino

222

</head>

Then, we define two buttons inside the interface, one to turn the relay on, and the other

to turn it off again.

 <div class='container'>

 <h1>Relay Control</h1>

 <div class='row'>

 <div class="col-md-1">Relay</div>

 <div class="col-md-2">

 <button id='on' class='btn btn-block btn-success'>On</button>

 </div>

 <div class="col-md-2">

 <button id='off' class='btn btn-block btn-danger'>On</button>

 </div>

 </div>

 </div>

Now, we also need a client-side Javascript file to handle the clicks on the buttons. We will

also create a device that we will link to the mDNS name of our Arduino device. If you

changed this in Arduino code, you will need to modify it here as well.

// Create device

 var device = new Device("arduino.local");

 // Button

 $('#on').click(function() {

 device.digitalWrite(8, 1);

 });

 $('#off').click(function() {

 device.digitalWrite(8, 0);

 });

The complete code for this project can be found on the GitHub repository. Go into the

interface folder, and simply open the HTML file with your favorite browser. You should see

something similar inside your browser:

Arduino

223

Try to click a button on the web interface; it should change the state of the relay nearly

instantly.

If you managed to get it working, bravo! You just built a Wi-Fi-controlled light switch. Of

course, you can control much more than lights with this project. Just make sure your relay

supports the power required for the device you want to control, and you are good to go.

