ARDUINO

tutor'lalspomt

I MP LY EASYLEARNII

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

Arduino

About the Tutorial

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and
software. It consists of a circuit board, which can be programed (referred to as
a microcontroller) and a ready-made software «called Arduino IDE (Integrated

Development Environment), which is used to write and upload the computer code to the
physical board.

Arduino provides a standard form factor that breaks the functions of the micro-controller
into a more accessible package.

Audience

This tutorial is intended for enthusiastic students or hobbyists. With Arduino, one can get
to know the basics of micro-controllers and sensors very quickly and can start building
prototype with very little investment.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already familiar
with the basics of C and C++. If you are not well aware of these concepts, then we will
suggest you go through our short tutorials on C and C++. A basic understanding of
microcontrollers and electronics is also expected.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAEYLEARNINEG

X

mailto:contact@tutorialspoint.com

Arduino

Table of Contents

ADOUL TNE TULOITAL c.eviiiiieeiee ettt ettt et e e bt e s bte e bt e e sabeesateesabeessaeesabeesaseesabaesaneenas i
F Y Lo [T o ol OSSPSR TP PURRTPTOTSRPRIN i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 0}V T4 o A D T =1 ' =Y SRR i
BRI] o (o] @o T o =Y o} £ PSPPI i
ARDUINQO — BASICSococcciirsscsmissssssesassssssmsssssssssmssssssmssssssssssssssssmssss sssssmssssssnssnsssessmssssssassnssssssasns 1
L. AFAUINO — OVEIVIEW ..cceeeeeeeeneeeemeeemeemmmemsss 2
BOAIT TYPES 1.ttt ettt ettt ettt e e st e st sa bt e ea bt e s a bt e et e e sa bt e e ab e e s bt e e bt e sa Rt e e abe e sab e e eabee s beeeaneesabeeenree s 3
2. Arduino — Board DeSCriPtioN.......cccceiiiiiiiiiiiss 6
TR Vo [T Vo Tl [13 = | - e T 9
4. Arduino — Program STrUCTUIEcciiiiiiiiiiiiiiiiiiii s s s s s s s s s s s s s s s s s s e s s e e nanes 17
B. Arduinog — Data TYPES....ccceeiiiiiiiiiiiiisisisses 19
1Yo o U O OO TP PP OTUOPPPPOTPPON 19
20 To] L=T 1 o T TP OTP PP 19
(1 1= ST PRRUUP U PURPRRRRRUPNS 20
UNSIBNEA ChAT 1.ttt et b e st e et e sttt s bt e s bt e e bt e sabeeeabeesabeeeabeesabeesseeebeeanneenane 21
01N TP PO PP PP PPTUPPPTPPPRRPPPRIOt 21
int 21
UNSIGNEA INT ittt et et b e st e st e st e s b e e sttt e bt e sabeeeabeesabeeeneesabeeeneeebeeanneenane 21
{ IV T o T SO P OO P TP OTUOPPPPOTPPON 21
0] o ¥ - PSPPSR RORRPON 22
(UL T4 o T=To I o] o V-SSR 22
£ 4o o A OO O PP PP PPPUROPPUTOTPTPPRIORE 22
Lo | PO TP TP ST PP OUPTPPROP 22
o [oT0] o =TT TP TSP P USTRPPPTOPPROUP 23
6. Arduino — Variables & CONSLANLSccciiiiiiiiiiiiiiiiiiiiiiierieere s asss s ssasse s s s s e e 24
WHhat iS Variabhle SCOPE? ...uiii ittt et e et e e e e e sttt e e s et e e senaeeeesnsteeeansseeesanseeesssseeaans 24
T. Arduino — OPEIratorscccceiiiiiiiiiiiisss 26
F AN a1 oY= ol @ o T=T = o] PSPPSR 26
COMPATISON OPEIATOIS coiiiiiiiiiii eaeaans 27
2 ToTo) Lo Y oM O] o 1T =1 o -SSR 29
ST AT R @ 1=T =) o] P ON 30
(@foT5] oo U1 a Yo I] 0 T=T -1 o PSRRI 31
B. Arduino — Control Statements........cccovvveriiiiiiiiiiiiereiiiiinrres s ass s s aanne e 33
L = =T ' =Y o AP P PO PPRPPPOTOPPRPPPRIOt 34
=] I - =T o 4 1=Y o | O PP PSP PPOTPTOPPRO 35
if...€1SE f . BlSE STALEMENTiiitiietee ettt s rbe e st e e bt e s be e sbe e s beesneenane 37
SWItCHh Cas@ STATEMENTeiiiiiiiiiiee ettt ettt e e e st e e e s saate e e s bbeeeeaabeeessasteeesbbeeeennbaeesnnnns 39
(Ofo] o 1A TeTa =1 @) oT=T =) o] Sl SURPNY 41
Rules of CoNditioNal OP@rator.........ueeiii it e e e e e s et e e e e e e s e abta e e e e e e sessasbbaseaeeeesnnssaaneaaans 41
L R N o [T 1T T Tl e o' L3 42

tutorialspoint

EIMPLYEAEYLEARNINEG

X

17T 11 =N o Yo« XSSP 42
(o Lo TRV oY1 1= oo o IS SRS RSNE 43
0] g Uo Yo o PSSR 44
(VLT 7=To [Koo o RO P PP PP P P PO TSRO P P OPPPOPPTO 45
INTINTEE JOOP 1ttt ettt e s et et e s bt e e bt e e sab e e e ae e e sabe e bt e e sabe e be e e smbeebeeesaneenees 45
10, Arduino - FUNCHIONS...cccuuueeieeeeeeeeeeememememeemmsssns 47
[V aToia oY T D =Tol - - 4[] o USSP 48
11, Arduino = SEFNES coeeccieereiiiiiiiiiinnretiiiiiiisssstesisisssssssssessssssssssssssessssssssssssssessssssssssssssssssssssssssnnsessssssssssnns 51
Ao T @ =Y Tt =T o Y = VUSSR 51
MaANIPUIGEING STEING ATTAYS .oiiiiiiieeiiieeeecee e eete e st e e e erre e e e rtteeeesateeesesaeeesasaeeasstseeeansseeessseesanstesesansseeessseeaans 52
FUNCLIONS t0 Manipulate StriNG AITAYSviiiciieeeiiieeeeiiee e ecteeeestt e e e etr e e e s taeeeesatreesssseeessseeeanstesesssseeesnsseeenns 54
F N - 1V = 7o 10 o £ SRS 58
12, Arduino — SEriNG ODJEC.......ciiiiiieeriiiiiiiiiertre et ass e s s aas s e e s s s e s sanns 59
WAt S @3N OBJECL? ..eeiiiieiiie ettt ettt s bttt e s bt e bt e sttt e bt e e bt e e ssee e bt e e saneebeeennneeneas 59
When tO USE @ SEHNEG ODJECE ..eeiutiiiiieiiii ettt ettt e set e ettt sae e e bt e saeesbeeesbeesneas 61
13, ArduiNo = TIME ciiiiiiiiieeieiiiiiiiiniiereeeniisssssste s ssssssssss s e s s s s s s s sass s e s s s s s s sssssesssssssssssnssenssssssssssnssensssssssssnns 62
(o L= P AT I 0L T £ oY o SRS UUR RPNt 62
delayMicroseconds() FUNCLIONiii et et e e et e e e ette e e stbeeeessteeeeensaeeessbeeeesssaeesannes 63
L0 V1T § I 0T T € o o P USSR 63
a YTl g 1 I {8 a1 Lo o TSR 64
LA, ATAUINO = ATTAYS ceeeeeeereneeneeeeneeeeeememeeeesssesssnnns 66
DECIAIINEG ATTAYS ..eeeitieiiieeitee ittt e et e sttt e st e e s bt e st e e su bt e saeeesaeeesateesabeesaeeessbe e st e e sbb e e aeeesabe e st e esabeenneeesnbeeseeesaneennes 67
EXQMPIES USING ATTAYS ..eeeuieiiitieeieeiiee ettt ettt sat e st e st e s at e e e at e e s ab e e sat e e sabeesaeeesabe e bt e e sabeesneeesnbeeseeennnesnnees 67
Arduino — Passing Arrays t0 FUNCLIONSc.eiiiiiiiieiiet ettt et sttt et st s b e e saneeneas 70
MUKIAIMENSIONAT AFTQYS ettt ettt e s e et e st e e s it e e sabeesae e e sabe e bt e e sabeesbeeesnbeenbeeennnesnnees 73
ARDUINO - FUNCTION LIBRARIES.......ccccinimmnnmmsnemsnisssassssssssssssssssssssssssssssssssasssssssssas 78
15. AFAUINO — I/O FUNCHIONS c.cceeeeeeeeeeeeeeeeeeseeessessesssnns 79
Pins CONFIGUIEd @S INPUT ...coiiiiiieeiieecctee sttt ettt e e ettt e e st e e e st e e s saet e e e saaeaeesntaeeesnsteeesnsaeeeessaeesannneeesnsseanans 79
U T 2L =T 1 o 3SR 79
Pins CoNfiZUIred @S OUTPUTuiiiiiiiie ettt e ettt e e e tte e e ettt e e e stte e e eeatteeestbaaeessbaeeeenssaeesasseaeaastaseeanseeeessseaaans 80
o1 Ta] AV, FoTe I= § I SL¥ T Lot o] o TSRS PR 80
QIZITAIWIILE() FUNCLION L.eiieiiiiee ettt et e ettt e e e et e e e etbe e e e e abaeeeeasaaeestseeaeastseeeansaseessbeeeesstaeenannes 81
ANAIOZREAA() TUNCLION ..veieiiiiee ettt e et e et e e e et e e e e st e e e eetaee e e tbeeeeastaeeeensaeeessseeeesstaeenannes 82
16. Arduino — AAVANCEO 1/ FUNCHION c..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeessnns 84
ANAlOGRETEIENCE() FUNCLION ..viieiiiiiiecieecieeete et ettt et e ste e st e e s e e s abe e steeeabeesateeeaseesaseeanseesaseesaseesnseesnseess 84
17. Arduino — Character FUNCHIONS.......cciiiiiiiiiieniiiiiiiiieeteniiisssssnsees s sssssses s ssssssssnssesssssssssssnnssssssssssssnns 86
3T [4T o 1= S 87
18. Arduino — Math LIBrary......eeeeeeeeeeeeeeeeeeeeeeeeeeemmeeeeeeeememeeeeesesesssnssnnsnns 93
(1o =TV Y/ - [o] o LS URRR 93
(1o =T VA U] o Tt 4 Lo o 3 URRR 95
Y111 o] LI URR P 99
19, Arduino — TrigonomMetric FUNCLIONSceeeeeeeeeeeeemmeenemneeneeneneeneeeeeseseeeesssnns 101

tutorialspoint i

EIiIMPLYEAEYLEARMNINE

1

ARDUINO — ADVANCED ...coioitmimisnisemssnissesasssssssmssnsssnssassssssnns 102
20, Arduino — DU & ZEI0uuiiiiiiiiiss 103
F Yo [V 1 oo 1741 o SRS 104
21. Arduino — Pulse Width Modulation..........ccccceiiiiiiiiiiiiiiiiiirrcrcrrssrrsssssssssssss s s s s s s s s s sssssssssssnnnns 106
ST (ol aTaelT o] [N o B ALYV USRS 106
ANAIOZWIITE() FUNCEION . .eiiiiiiee ettt e s e e e et e e e ae e e e s ta e e e esteeesaasaeeesntaeeeanssaeesansnaeesnsaeaaans 107
22, Arduino — Random NUMDENS........cccoiiiiiiiiiiniiiiiiiisiss 109
YT o 0 1Y=T=Te [(Y=Y | PSPPSR 109
=TT Lo o o) T PSPPSRI 109
2T PP PPPPTPRS 110
By S ettt e e e e et a et e e s e aa e e e e s 110
23, Arduino = INEEITUPLES ..eeeeeeeeiiiiiiiiiiineeetiiiiiissnnseesssssssssssssssssssssssssssssessnnssssssssss 112
YooYl 41T U £ RSP 113
24, Arduino — COMMUNICATION ..cceeeiiiiiiiiiiiieiiiiiiireereeieeesrreennnsssessessesnnsssssssssssnnnsssssssssssnnnsssssssssssnnnnsssssssnaes 115
T |11 @oT 0 0] 0o 1] o] Tor= 4] o OSSR 115
Serial CommUNICAtION IMOTUIES ...ttt e e e e e e et b e e e e e e e e eetaraeeeaeeeenasraeeeaeeeennes 115
Types of Serial COMMUNICAtIONScoiuiiiiiiiiiieee ettt st sab et esateesateesareesaeee s 116
F N e [T Yo T A S TP UTPRRRR 117
25. Arduino — Inter Integrated CirCUItccciiiiiiiiiiiiiiiiiiiiiisiisisss 119
2 To Lo I 1 Ol 1 o SRR 119
F N o (U7 o 20 17 G PP 119
MaSter TraNSMITLEE / SIAVE RECEIVET ..ccci ittt eeee et e e e s e st e et e e s sesesat ettt eessesassraaseeeesesasreareeeess 120
M aSter RECEIVET / SlaVve Tran SOl coeeiei i ceeeeieeee e ettt e e e e e ettt eeessesebeeetesssesaabeeeeesssesassseaseesssesssranseeees 121
26. Arduino — Serial Peripheral INterfaceccovvveeiiiiiiiiiiieneiiiiiinnereennssees s rssssssssse s s sssssssnssssssssas 123
2T o T T o IS 2 I g TSR 123
Y I T 1Y I 1 2 SRS 124
K] I E] 7 NV SRR 125
ARDUINO = PROJECTS ..ctistiimsmssemsnssssssamsssssasssssssssssssssssssassssssssssssssssnssssssasssssssssassssssssssssssssnsanses 127
27. Arduino — BlINKIiNG LEDcccoeiiiiiiiiiiiiss 128
2B. Arduino — FAdiNG LEDccccoiiiiiiiiiiiiiiiisiss 132
29. Arduino — Reading ANalog VOItage........cccciiiiiiiiiiiiiiiiiiiiniississ 137
30. Arduino — LED Bar Graph......ccccciiiiiiiiiiiiiiiiininiinnss 141
31. Arduino — Keyboard LOBOULcccceiiiiiiiiiiiiiiiisiiisisisissssiss 145
32, Arduino — Keyboard IMESSABEcccceriiiiiiiiiiiiiiiss 151
33. Arduino — Mouse BUttON CONIOl.......ceeeeeciiiiiieieeccirieieeecescee s s eeernes e s e s s e s e snassssssssesennnsssssssseesnnnnsssnsnnenes 154
34, Arduino — Keyboard Serialccccceiiiiiiiiiiiiiiiiiiiiniininnnninnssssssssssssss s s s s 158

tutorialspoint

EIMPLYEAEYLEARNINEG

X

ARDUINO — SENSORSooiiiimismnmnmssmssmsmssasssnssnss 161
35. Arduino — HUMIAItY SENSOKuiiiiiiiiiiiiiiiiiiiiissiississses 162
36. Arduino — TEMPEIrature SENSONccceeeiiiiiiisissneeiisiiissssssseesssisssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssss 168
37. Arduino — Water DEtECLOr / SENSOF.....cccveeererrrereiirreeeeeereteeesssseesesssseesssssssessssssessssasssssssassessssnsessssansessse 171
3B. Arduino — PIR SENSOFuueeeiiiieeiiiiiteiiiiieeeiiiseesiisstesssssessssssessessssesssssstessssssesssssssessssssesssssssessssasesssnns 174
39, Arduino — UILFraSONIC SENSOTueciiiueiiiiiieeiiiiiteiiiseeeiiieeeiissnessssssesssssnesssssseessssssesssssssessssssssssssssesssnes 179
40, Arduino — Connecting SWItChocveeiiiiiii 183
ARDUINO —MOTOR CONTROL....ccicmrursursnssnssssssssssssssssassassssssssssssssssnssssssssassssssssssssssssnsanssnssnss 187
e MY e [T 1T Vo Tl 0 T O 1V T 1o 188

MOTOF SPEEA CONTIOL ... uiiiiiieiiii ettt ettt et ettt e s e e bt e e st e e sbe e e s ab e e s bt e e sabeeeneeesabeesaseesaseennneesn 190

SPIN DIr€CHION CONTIOL ..ttt ettt s e bt e sbt e e be e e sabeesbe e e sabesneeesnnesnneas 192
A2, Arduino — SErVO IMOTOFueiiiiiuiiiiiiiriiiiiitiiinteeiisete e iessnessssssnesessssnesesssnessesssnesesssneesessanesssssnnesenss 196
3. Arduing — StEPPEr IMOtOrccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirersssnnnns 201
ARDUINO AND SOUND ...cootismmsmmsmssmsnsssssusssnssnssssssssssssssssssssssnssnssnssnss 205
3. Arduino —Tone LIBrary ...cccccciiiiiiiiiiiiiiiiiiiiisssens 206
45. Arduino —Wireless COMMUNICAtIONccocuiiiiiiuniiiiiiiiiiiiiniiiiteiiere e sssssse e ssneesesssnessssssnesenss 212
46. Arduino — Network CommuniCatioN.......cccceeiiiiiiiiiieitiiietiiite et sessse e sssnessssssnesenns 217

tutorialspoint

EIMPLYEAEYLEARNINEG

X

Arduino

Arduino — Basics

@F}JFF,‘CE‘?!?EE’EQE 1

1. Arduino - Overview

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and
software. It consists of a circuit board, which can be programed (referred to as
a microcontroller) and a ready-made software called Arduino IDE (Integrated

Development Environment), which is used to write and upload the computer code to the
physical board.

The key features are:

9

Arduino boards are able to read analog or digital input signals from different
sensors and turn it into an output such as activating a motor, turning LED on/off,
connect to the cloud and many other actions.

You can control your board functions by sending a set of instructions to the
microcontroller on the board via Arduino IDE (referred to as uploading software).

Unlike most previous programmable circuit boards, Arduino does not need an extra
piece of hardware (called a programmer) in order to load a new code onto the
board. You can simply use a USB cable.

Additionally, the Arduino IDE uses a simplified version of C++, making it easier to
learn to program.

Finally, Arduino provides a standard form factor that breaks the functions of the
micro-controller into a more accessible package.

tutorialspoint 2

EIMPLYEAEYLEARMNINEG

Arduino

@ sketch_nov29a | Arduino 1.0.6 = EoN >
File Edit Sketch Tools Help

s B -

skafch_nov28a §

vold setup()
{

roid lnop{ ()

Arduine Une on COMIO

Board Types

Various kinds of Arduino boards are available depending on different microcontrollers used.
However, all Arduino boards have one thing in common: they are programed through the
Arduino IDE.

The differences are based on the number of inputs and outputs (the number of sensors,
LEDs, and buttons you can use on a single board), speed, operating voltage, form factor
etc. Some boards are designed to be embedded and have no programming interface
(hardware), which you would need to buy separately. Some can run directly from a 3.7V
battery, others need at least 5V.

'@J Mtutorialspoint 3

EIMPLYEAEYLEARMNINEG

Here is a list of different Arduino boards available.

Arduino boards based on ATMEGA328 microcontroller

Arduino

Operating | Clock | Digital | Analog Programming
SR BT Volt Speed i/o Inputs PWM | UART Interface
Arduino Uno USB via
R3 5V 16MHz 14 6 6 1 ATMegal6U2
Arduino Uno USB via
R3 SMD oV 16MHz 14 6 6 1| ATMega16U2
Red Board 5v 16MHz 14 6 6 1 USB via FTDI
. FTDI-
Arduino Pro 3.3V 8 MHz 14 6 6 1 | Compatible
3.3v/8 MHz
Header
FTDI-
Arduino Pro .
5V/16MHz 5V 16MHz 14 6 6 1 Compatible
Header
Arduino mini FTDI-
5V 16MHz 14 8 6 1 Compatible
05
Header
Arduino Pro FTDI-
mini 3.3V 8MHz 14 8 6 1 Compatible
3.3v/8mhz Header
Arduino Pro FTDI-
mini 5V 16MHz 14 8 6 1 Compatible
5v/16mhz Header
Arduino FTDI-
5V 16MHz 14 6 6 1 Compatible
Ethernet
Header
FTDI-
Arduino Fio 3.3V 8MHz 14 8 6 1 Compatible
Header
LilyPad FTDI-
Arduino 328 3.3V 8MHz 14 6 6 1 Compatible
main board Header
LilyPad FTDI-
Arduino 3.3V 8MHz 9 4 5 0 Compatible
simply board Header
4

tutorialspoint

EAEYLEARMNIMN

G

Arduino

Arduino boards based on ATMEGA32u4 microcontroller

Operating | Clock Digital | Analog Programming
T LTS Volt Speed i/o Inputs PWM sl Interface
Arduino 5V 16MHz 20 12 7 1 Native USB
Leonardo
Pro micro .
5V/16MHz 5V 16MHz 14 6 6 1 Native USB
Pro micro .
3.3V/8MHz 5V 16MHz 14 6 6 1 Native USB
LilyPad .
Arduino USB 3.3V 8MHz 14 6 6 1 Native USB
Arduino boards based on ATMEGA2560 microcontroller
Board Operating | Clock Digital Analog Programming
Name Volt Speed i/o Inputs PWM il Interface
Arduino .
USB via
I\R4§ga 2560 5V 16MHz 54 16 14 4 ATMega16U2
Mega Pro FTDI-
9 3.3V 8MHz 54 16 14 4 | Compatible
3.3V
Header
Mega Pro FTDI-
9 5V 16MHz 54 16 14 4 | Compatible
5V
Header
Mega Pro FTDI-
Mini 3.3V 8MHz 54 16 14 4 Compatible
3.3V Header
Arduino boards based on AT91SAM3XS8E microcontroller
Board Operating Clock Digital Analog Programming
Name Volt Speed i/o Inputs PWM il Interface
Argl‘j'eno 3.3V 84MHz 54 12 12 4 USB native
5

'&j . tutorialspoint

LYEAEYLEARMNINEG

2. Arduino—Board Description

In this chapter, we will learn about the different components on the Arduino board. We
will study the Arduino UNO board because it is the most popular board in the Arduino
board family. In addition, it is the best board to get started with electronics and coding.
Some boards look a bit different from the one given below, but most Arduinos have
majority of these components in common.

MR W . ARDUINO.CC — MADE XN ITALY

. Power USB

Arduino board can be powered by using the USB cable from your computer. All you need
to do is connect the USB cable to the USB connection (1).

@' tutorialspoint 6

EIMPLYEAEYLEARMNINEG

Arduino

Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it
to the Barrel Jack (2).

Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board
and stabilize the DC voltages used by the processor and other elements.

Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate
time? The answer is, by using the crystal oscillator. The number printed on top of the
Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can
reset the UNO board in two ways. First, by using the reset button (17) on the board.
Second, you can connect an external reset button to the Arduino pin labelled RESET (5).

Pins (3.3, 5, GND, Vin)
e 3.3V (6): Supply 3.3 output volt

e 5V (7): Supply 5 output volt

e Most of the components used with Arduino board works fine with 3.3 volt
and 5 volt.

e GND (8)(Ground): There are several GND pins on the Arduino, any of which
can be used to ground your circuit.

e Vin (9): This pin also can be used to power the Arduino board from an
external power source, like AC mains power supply.

. Analog pins

The Arduino UNO board has five analog input pins A0 through A5. These pins can read the
signal from an analog sensor like the humidity sensor or temperature sensor and convert
it into a digital value that can be read by the microprocessor.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 7

Arduino

. Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of
your board. The main IC (integrated circuit) on the Arduino is slightly different from board
to board. The microcontrollers are usually of the ATMEL Company. You must know what
IC your board has before loading up a new program from the Arduino IDE. This information
is available on the top of the IC. For more details about the IC construction and functions,
you can refer to the data sheet.

. ICSP pin

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of
MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral
Interface), which could be considered as an "expansion" of the output. Actually, you are
slaving the output device to the master of the SPI bus.

. Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate that
your board is powered up correctly. If this light does not turn on, then there is something
wrong with the connection.

. TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in
two places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins
responsible for serial communication. Second, the TX and RX led (13). The TX led flashes
with different speed while sending the serial data. The speed of flashing depends on the
baud rate used by the board. RX flashes during the receiving process.

. DigitalI / O

The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse
Width Modulation) output. These pins can be configured to work as input digital pins to
read logic values (0 or 1) or as digital output pins to drive different modules like LEDs,
relays, etc. The pins labeled “~" can be used to generate PWM.

. AREF

AREF stands for Analog Reference. It is sometimes, used to set an external reference
voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 8

3. Arduino—Installation

After learning about the main parts of the Arduino UNO board, we are ready to learn how
to set up the Arduino IDE. Once we learn this, we will be ready to upload our program on
the Arduino board.

In this section, we will learn in easy steps, how to set up the Arduino IDE on our computer
and prepare the board to receive the program via USB cable.

Step 1: First you must have your Arduino board (you can choose your favorite board) and
a USB cable. In case you use Arduino UNO, Arduino Duemilanove, Nano, Arduino Mega
2560, or Diecimila, you will need a standard USB cable (A plug to B plug), the kind you
would connect to a USB printer as shown in the following image.

In case you use Arduino Nano, you will need an A to Mini-B cable instead as shown in the
following image.

Step 2: Download Arduino IDE Software.

You can get different versions of Arduino IDE from the Download page on the Arduino
Official website. You must select your software, which is compatible with your operating
system (Windows, I0S, or Linux). After your file download is complete, unzip the file.

@' tutorialspoint 2

EIMPLYEAEYLEARMNINEG

mailto:https://www.arduino.cc/en/Main/Software?subject=Dwonlad%20page

Arduino

[a1

Opening arduinc-nighthy-windows.zip @
You have chosen to open:
g arduino-nightly-windows.zip

which is: WinRAR ZIP archive (148 ME)
from: https://downloads.arduino.cc

What should Firefox do with this file?

Openwith | WinRAR archiver (default) -

..

7] Do this automnatically for files like this frem now on.

Ok | | Cancel

Step 3: Power up your board.

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power from
either, the USB connection to the computer or an external power supply. If you are using
an Arduino Diecimila, you have to make sure that the board is configured to draw power
from the USB connection. The power source is selected with a jumper, a small piece of
plastic that fits onto two of the three pins between the USB and power jacks. Check that
it is on the two pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable. The green power LED
(labeled PWR) should glow.

Step 4: Launch Arduino IDE.

After your Arduino IDE software is downloaded, you need to unzip the folder. Inside the
folder, you can find the application icon with an infinity label (application.exe). Double-
click the icon to start the IDE.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 10

Arduino

@C)v‘ !, » Computer » Local Disk (C:) » Program Files » Arduino »

Organize v Include in library v Share with v Bumn New folder

% Favorites Name ; Date modified
Bl Desktop drivers 9/27/2015 1:24 PM
& Downloads . examples 9/27/20151:31 PM
l..:.‘ Recent Places . hardware 9/27/20151:31 PM

L java 9/27/20151:25 PM

- Libraries lib 9/27/20151:32 PM
[Documents | libraries 11/19/2015 5:59 PM
o' Music | reference 9/27/2015 1;25 PM
[Pictures | tools 9/27/20151:25 PM
£¥ Videos @ arduino = 9/16/2014 3:46 PM

arduino_debug
%] cygiconv-2.dll

9/16/2014 3:46 PM

2
1% Computer 0/16/2014 3:46 PM

&, Local Disk (C) %] cyqwinl.dil 9/16/2014 3:46 PM
s MTC MASTER (D:)) libusb0.dll 9/16/2014 3:46 PM
(s INFORMATION TECHNOLOG | | revisions 9/16/2014 3:46 PM

9/16/2014 3:46 PM
9/27/20151:26 PM

%] rexSerial dll

@ uninstall

6" Network

Type

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder
Application
Application
Application extens...
Application extens...
Application extens..,
Text Document
Application extens...

Application

Size

844 KB
383 KB
947 KB
1,829 KB
43KB
39 KB
76 KB
402 KB

Step 5: Open your first project.
Once the software starts, you have two options:

e Create a new project.

e Open an existing project example.

9

tutorialspoint

EIMPLYEAEYLEARMNINEG

11

To create a new project, select File --> New.

Arduino

2 sketch_nov29a | Arduino 1,056 fol o
[File] Edit Sketch Tools Help

New Ctri-N

Open... Ctrl+O

Sketchbook »

Bxamples » %

Close Ctrie W

Save Ctrl+S

Save As... Ctrl+Shift+S

Upload CtrlslJ

Upload Using Programmer Ctrls Shift«U

Page Setup Ctrl+ Shift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Ctrl«Q

Arduine Uno on COM1I6

-
£2 sketch_nov29a | Arduino 106
File Edit Sketch Tools Help

Ardisino Uno on COM1IB

To open an existing project example, select File -> Example -> Basics -> Blink.

'@J Mtutorialspoint

EIMPLYEAEYLEARMNINEG

12

Arduino

01.Basics

» AnalogResdSenal
02.Digital » BareMinimum
03.Analog v Bk
04, Communication » DigitaiReadSenal
05.Control » Fade
-~ 06,Sensors ’ ResdAnalogVoltage
% Blink | Arduno 106 ——wmmey
07.Display ’
[File] Edit Sketch Tools Help f ——— i
N ChiteN s ' 2 Bink [Arduino 105 (E=3 558 X"
e
ol 09.Us8 » Fie £t Sketch Tools Help
Open... Ctie0
10.StarterKit > —~
Sketchbook »
ArdunalsP
Examples 3 Tea N
Close Ctrie W i
Save Cirhs S AccelStepper »
Save As... Ctrie ShiftsS Adafruit CC3000 »
Upload CtrisU Adafrua_1LB340 »
Upload Using Programmer Ctrle Shift« U Adafrue LBM1 »
b c g Adafruit_ NecPixel »
e .
ageSeip e Adafruit_nRFS001 »
Print CtrdeP
Adafruit RASTS b
Preferences Ctrte Comma Adafruit_SS01306 » L
Adafruie ST7735 » : ue
Quit Ctr+Q led « 13;
Adafrus STMPESL0 » @ led: 2 1%
Adafrue V51053 » .
ADC ’ setw () |
ARSoftSenal ’ - t
Ao - ' ixMode(led, OUTHUT);
Audio »
[
Bounce ’
CapacitiveSensor »
DrruSimple »
Dogled ’
DSI307RTC »
DS18820Emulator
v

Here, we are selecting just one of the examples with the name Blink. It turns the LED on
and off with some time delay. You can select any other example from the list.

Step 6: Select your Arduino board.

To avoid any error while uploading your program to the board, you must select the correct
Arduino board name, which matches with the board connected to your computer.

Go to Tools -> Board and select your board.

'@J tutorialspoint 13

Arduino

Blink | Arduino 1.0.6

File Edit Sketch Help

Auto Format Ctrl+T
Archive Sketch
Blink § Fix Enceding & Reload

Seral Monitor Ctrl+5Shift+ M
Beoard: "Arduine Unc” r
Seral Port 3
USE Type 3
CPU Speed 3
Keyboard Layout 4
Programmer 4

Burn Bootloader

Teensy 3.2/31

Teensy 3.0

Teensy LC

Teensy 2.0

Teensy++ 2.0

Arduine Uneo

Arduine Duemilanove w/ ATmega32s

Arduine Diecimila or Duemilanove w/ ATmegal6s
Arduino Mano w/ ATmega328

Arduine Mano w/ ATmegal68

Arduinoc Mega 2560 or Mega ADK

Arduinc Mega (ATmegal2&0)

Arduino Leonardo

Arduino Esplora

Arduine Micro

Arduine Mini w/ ATmega328

Arduino Mini w/ ATmegalbd

Arduino Ethernet

Arduinec Fio

Arduine BT w/ ATmega328

Arduine BT w/ ATmegalbd

LilyPad Arduina USE

LilyPad Arduine w/ ATmega328

LilyPad Arduino w/ ATmegal 68

Arduine Pro or Pre Mini (5Y, 16 MHz) w/ ATmega328
Arduine Pro or Pro Mini (5Y, 16 MHz) w/ ATmegalG8
Arduine Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328
Arduine Pro or Pro Mini (3.3V, 8 MHz) w/ ATmegalb8
Arduino NG or older w/ ATmegal 68

Arduinoc MG or older w/ ATmega8

Arduine Robot Control

Arduinc Robot Motor

Here, we have selected Arduino Uno board according to our tutorial, but you must select

the name matching the board that you are using.

@ Mtutorialspoint

EIMPLYEAEBEYLEARNING

14

Arduino

Step 7: Select your serial port.

Select the serial device of the Arduino board. Go to Tools -> Serial Port menu. This is
likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial
ports). To find out, you can disconnect your Arduino board and re-open the menu, the
entry that disappears should be of the Arduino board. Reconnect the board and select that
serial port.

-

Blink | Arduino 1.0.6 [| [ES]

File Edit Sketch Help
Auto Format Ctrl+T E
Archive Sketch

Blink & Fix Encoding & Reload u

Serial Monitor Ctrl+Shift+M i
Board: "Arduino Uno" *
Senal Port » COmM1
USE Type » COM2
CPU Speed » COMz2
Keyboard Layout »
Programrmer »

Burn Bootloader

Arduino Unoe on COMAG

IMPLYEAEYLEARMNING

@ Mtutorialspoint 15

Arduino

Step 8: Upload the program to your board.

Before explaining how we can upload our program to the board, we must demonstrate the
function of each symbol appearing in the Arduino IDE toolbar.

>
1

Used to check if there is any compilation error.

B- Used to upload a program to the Arduino board.

C- Shortcut used to create a new sketch.
D- Used to directly open one of the example sketch.
E- Used to save your sketch.

F- Serial monitor used to receive serial data from the board and send the serial data

to the board.

Now, simply click the "Upload" button in the environment. Wait a few seconds; you will
see the RX and TX LEDs on the board, flashing. If the upload is successful, the message
"Done uploading" will appear in the status bar.

Note: If you have an Arduino Mini, NG, or other board, you need to press the reset button
physically on the board, immediately before clicking the upload button on the Arduino
Software.

MPLYEAEYLEARMNING

@ Mtutorialspoint 16

4. Arduino—Program Structure

In this chapter, we will study in depth, the Arduino program structure and we will learn
more new terminologies used in the Arduino world. The Arduino software is open-source.
The source code for the Java environment is released under the GPL and the C/C++
microcontroller libraries are under the LGPL.

Sketch: The first new terminology is the Arduino program called “sketch”.

Structure

Arduino programs can be divided in three main parts: Structure, Values (variables and
constants), and Functions. In this tutorial, we will learn about the Arduino software
program, step by step, and how we can write the program without any syntax or
compilation error.

Let us start with the Structure. Software structure consist of two main functions:

e Setup() function

e Loop() function

sketch_nov29a | Arduine 1.0.6 = o<

File Edit Sketch Tools Help

sketch_nov29a &

wvold =setup ()
i

}

void loop| ()
i

Arduino Uno aon COMIG

@' tutorialspoint 17

EIMPLYEAEYLEARMNINEG

Arduino

Void setup ()
{

}

e PURPOSE: The setup() function is called when a sketch starts. Use it to initialize
the variables, pin modes, start using libraries, etc. The setup function will only run
once, after each power up or reset of the Arduino board.

e INPUT: -
e OUTPUT: -
e RETURN: -

Void Loop ()

e PURPOSE: After creating a setup() function, which initializes and sets the initial
values, the loop() function does precisely what its name suggests, and loops
consecutively, allowing your program to change and respond. Use it to actively
control the Arduino board.

e INPUT: -
e OUTPUT: -
¢ RETURN: -

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 18

5. Arduino — Data Types

Data types in C refers to an extensive system used for declaring variables or functions of
different types. The type of a variable determines how much space it occupies in the
storage and how the bit pattern stored is interpreted.

The following table provides all the data types that you will use during Arduino
programming.

void Boolean char Uncsr:%r;ed byte int Unsigned int word
long Unsigned short float double | array String-char String-object
long array
void

The void keyword is used only in function declarations. It indicates that the function is
expected to return no information to the function from which it was called.

Example

Void Loop ()

{
// rest of the code
¥
Boolean

A Boolean holds one of two values, true or false. Each Boolean variable occupies one byte
of memory.

Example

boolean val = false ; // declaration of variable with type boolean and initialize
it with false

boolean state = true ; // declaration of variable with type boolean and
initialize it with false

@' tutorialspoint 19

EIMPLYEAEYLEARMNINEG

Arduino

Char

A data type that takes up one byte of memory that stores a character value. Character
literals are written in single quotes like this: 'A' and for multiple characters, strings use
double quotes: "ABC".

However, characters are stored as numbers. You can see the specific encoding in the ASCII
chart. This means that it is possible to do arithmetic operations on characters, in which
the ASCII value of the character is used. For example, 'A' + 1 has the value 66, since the
ASCII value of the capital letter A is 65.

Example

Char chr_a = ‘a’ ;//declaration of variable with type char and initialize it
with character a

Char chr_c = 97 ;//declaration of variable with type char and initialize it
with character 97

ASCII Char Table

Ascii Chart =)
il
(1] 1 2 3 4 5 6 ra a8 -] A B C D E F I
o HUL i SOH STX |ETX |EOT ENQ ACK BEL BS | HT LF VT FF | CR | S0 51
3] 1 . 3 + 5 5 7 8 El 10 | 11 | 12 | 13 [14 | 15
1 DLE DC1 DC2 |DC3 |DC4 NAK SYN ETB CAN| EM SUB ESC FS G5 RS | US
15 7 18 19 20 21 22 23 24 25 25 27 28 29 30 31
2 s5pC 1 " % Yo B ' () = + - - !
32 33 34 35 36 37 38 39 40 41 42 43 44 [45 5 47
3 (1} 1 2 3 4 > [a8 9 = = - = = ?
45 49 50 51 52 53 54 55 56 57 53 59 a0 61 652 63
4 @ A B C D E F G H 3 K M (] (0]
54 55 =13 57 (==} 59 70 71 F2 73 71 75 75 F7 78 79
s P Q R s T u v w X Y Fa [\ 1 -~ _
80 81 82 83 84 85 86 87 838 89 S0 o1 92 93 S o5
6 B a b c d =1 f g h i j k | m n o
95 97 93 99 [100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
7 q r =5 t u v w x v z 1 | ¥ ~ DEL
112 113 114 | 115 116 117 115 119 120 121 1__2_2 123 124 | 125 13-5 127
g , F - T E s - Yoo 5 < ra
128 129 130 131 132 133 134 | 135 135 13 135 139 140 141 142 143
- L1 r ™ rr - _ — - ™ & > oe F
144 | 145 145 147 143 149 150 151 152 153 154 | 155 156 157 155 159
A i Lo £ ¥ . g - © a o — - ® -
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 [173 | 174 | 175
B o + 2 3 - 1] L - . 1 o > i | 1o | 34 é
175 177 175 170 120 131 132 183 134 | 185 135 187 138 139 190 191
- A A A | A A A mE E E E E i I I i
192 | 193 | 194 | 195 | 195 | 157 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
-] 0 3 O O x o U U U ¥ P B
208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 [221 | 222 | 223
E a a a a a E = & = & [i] i
224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 239 | 235 | 236 | 237 | 238 | 239
F i O o0 [i o + =] i i ii v i W
290 | 241 | 242 | 243 | 2494 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 2549 | 255

'@j tutorialspoint 20

https://www.arduino.cc/en/Reference/ASCIIchart
https://www.arduino.cc/en/Reference/ASCIIchart

Arduino

unsigned char

Unsigned char is an unsigned data type that occupies one byte of memory. The unsigned
char data type encodes numbers from 0 to 255.

Example

Unsigned Char chr_y = 121 ; // declaration of variable with type Unsigned
char and initialize it with character y

byte

A byte stores an 8-bit unsigned number, from 0 to 255.

Example

byte m = 25 ;//declaration of variable with type byte and initialize it with
25

int

Integers are the primary data-type for number storage. int stores a 16-bit (2-byte) value.
This yields a range of -32,768 to 32,767 (minimum value of -2~15 and a maximum value
of (2715) - 1).

The int size varies from board to board. On the Arduino Due, for example, an int stores a
32-bit (4-byte) value. This yields a range of -2,147,483,648 to 2,147,483,647 (minimum
value of -27231 and a maximum value of (2731) - 1).

Example

int counter = 32 ;// declaration of variable with type int and initialize it with
32

Unsigned int

Unsigned ints (unsigned integers) are the same as int in the way that they store a 2 byte
value. Instead of storing negative numbers, however, they only store positive values,
yielding a useful range of 0 to 65,535 (2716) - 1). The Due stores a 4 byte (32-bit) value,
ranging from 0 to 4,294,967,295 (2732 - 1).

Example

Unsigned int counter= 60 ; // declaration of variable with type unsigned int and
initialize it with 60

Word

On the Uno and other ATMEGA based boards, a word stores a 16-bit unsigned number. On
the Due and Zero, it stores a 32-bit unsigned number.

21

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

Arduino

Example

word w = 1000 ;//declaration of variable with type word and initialize it with
1000

Long

Long variables are extended size variables for number storage, and store 32 bits (4 bytes),
from 2,147,483,648 to 2,147,483,647.

Example

Long velocity= 102346 ;//declaration of variable with type Long and initialize
it with 102346

unsigned long

Unsigned long variables are extended size variables for number storage and store 32 bits
(4 bytes). Unlike standard longs, unsigned longs will not store negative numbers, making
their range from 0 to 4,294,967,295 (2732 - 1).

Unsigned Long velocity = 101006 ;// declaration of variable with type Unsigned
Long and initialize it with 101006

short

A short is a 16-bit data-type. On all Arduinos (ATMega and ARM based), a short stores a
16-bit (2-byte) value. This yields a range of -32,768 to 32,767 (minimum value of -2~15
and a maximum value of (2715) - 1).

short val= 13 ;//declaration of variable with type short and initialize it with
13

float

Data type for floating-point number is a number that has a decimal point. Floating-point
numbers are often used to approximate the analog and continuous values because they
have greater resolution than integers.

Floating-point numbers can be as large as 3.4028235E+38 and as low as 3.4028235E+38.
They are stored as 32 bits (4 bytes) of information.

float num = 1.352;//declaration of variable with type float and initialize it
with 1.352

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 22

Arduino

double

On the Uno and other ATMEGA based boards, Double precision floating-point number
occupies four bytes. That is, the double implementation is exactly the same as the float,
with no gain in precision. On the Arduino Due, doubles have 8-byte (64 bit) precision.

double num = 45.352 ;// declaration of variable with type double and initialize
it with 45,352

23

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

6. Arduino—Variables & Constants

Before we start explaining the variable types, a very important subject we need to make
sure, you fully understand is called the variable scope.

What is Variable Scope?

Variables in C programming language, which Arduino uses, have a property called scope.
A scope is a region of the program and there are three places where variables can be
declared. They are:

e Inside a function or a block, which is called local variables.
e In the definition of function parameters, which is called formal parameters.

e Outside of all functions, which is called global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used
only by the statements that are inside that function or block of code. Local variables are
not known to function outside their own. Following is the example using local variables:

Void setup ()

{
}
Void loop ()
{
int x, vy ;
int z ; Local variable declaration
X= 0;
y=0; actual initialization
z=10;
}

Global Variables

Global variables are defined outside of all the functions, usually at the top of the program.
The global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available
for use throughout your entire program after its declaration.

@' tutorialspoint 24

EIMPLYEAEYLEARMNINEG

The following example uses global and local variables:

Arduino

Int T, S ;
float ¢ =0 ; Global variable declaration
Void setup ()
{
}
Void loop ()
{
int x, vy ;

int z ; Local variable declaration

X= 0;
y=0; actual initialization

z=10;

@ Mtutorialspoint

EIMPLYEAEBEYLEARNING

25

7. Arduino — Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
functions. C language is rich in built-in operators and provides the following types of
operators:

e Arithmetic Operators
e Comparison Operators
e Boolean Operators

e Bitwise Operators

e Compound Operators

Arithmetic Operators
Assume variable A holds 10 and variable B holds 20 then -
Sl L Op_erator Description Example
name simple
assianment Stores the value to the right of the
9 = equal sign in the variable to the left of | A=B
operator .
the equal sign.
addition + Adds two operands A + B will give 30
subtraction i $ubtracts second operand from the A - B will give -10
first
multiplication * Multiply both operands A * B will give 200
division / Divide numerator by denominator B / A will give 2
modulo % Modulus. Operator .a.nd remainder of B % A will give 0
after an integer division
Example

void loop ()
{
int a=9,b=4,c;
c=a+b;

c=a-b;

@' tutorialspoint 26

EIMPLYEAEYLEARMNINEG

Arduino

c=a*b;
c=a/b;

c=a%b;

Result

a+b=13
a-b=5
a*b=36
a/b=2

Remainder when a divided by b=1

Comparison Operators
Assume variable A holds 10 and variable B holds 20 then -
Sl L Op_erator Description Example
name simple
Checks if the value of two operands .
__ . . L (A == B) is not
equal to == is equal or not, if yes then condition
true
becomes true.
Checks if the value of two operands
not equal to I= is equal or not, if values are not | (A != B) is true
equal then condition becomes true.
Checks if the value of left operand
is less than the value of right .
<
less than operand, if yes then condition (A <B)istrue
becomes true.
Checks if the value of left operand
is greater than the value of right .
>
greater than operand, if yes then condition (A > B) is not true
becomes true.
Checks if the value of left operand
less than or is less than or equal to the value of .
<= =
equal to right operand, if yes then condition (A <=B)istrue
becomes true.
Checks if the value of left operand
greater than - is greater than or equal to the value | (A >= B) is not

or equal to

of right operand, if yes then
condition becomes true.

true

'&j ' tutorialspoint

YEAEYLEARMIMN

27

Example

Arduino

void loop ()
{ int a=9,b=4
bool c = false;
if(a==b)
c=true;
else

c=false;

if(al!=b)
c=true;
else

c=false;

if(a<b)
c=true;
else

c=false;

if(a>b)
c=true;
else

c=false;

if (a<=b)
c=true;
else

c=false;

if (a>=Db)
c=true;
else

c=false;

@ Mtutorialspoint

EIMPLYEAEBEYLEARNING

28

Arduino

Result

c=false
c=true
c= false
c=true
c= false
c= false

Boolean Operators

Assume variable A holds 10 and variable B holds 20 then -

Operator Operator

. Description Example
name simple

Called Logical AND operator. If both
and && the operands are non-zero then then | (A && B) is true
condition becomes true.

Called Logical OR Operator. If any of
or | the two operands is non-zero then | (A || B) is true
then condition becomes true.

Called Logical NOT Operator. Use to
reverses the logical state of its
operand. If a condition is true then
Logical NOT operator will make false.

not ! I(A && B) is false

Example

void loop ()
{
int a=9,b=4
bool c = false;
if((a>b)&& (b<a))
c=true;
else

c=false;

if((a==b) || (b<a))
c=true;
else

c=false;

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 29

Arduino

if(!(a==b)&& (b<a))

c=true;
else
c=false;
}
Result
c=true
c=true
c= true
Bitwise Operators
Assume variable A holds 10 and variable B holds 20 then -
Sl Op_erator Description Example
name simple
Binary AND Operator copies a bit to (A&B) W.'“ give 12
and & o o which is 0000
the result if it exists in both operands.
1100
Binary OR Operator copies a bit if it (A .l B) W.'” give 61
or exists in either operand which is 0011
P ' 1101
~ —
Binary XOR Operator copies the bit if (A '.3) V\.“” grve
xor A - . 49 which is 0011
it is set in one operand but not both.
0001
Binary Ones Complement Operator is | (~A) will give -60
not ~ unary and has the effect of 'flipping' | which is 1100
bits. 0011
Binary Left Shift Operator. The left . .
operands value is moved left by the A << 2 will give
shift left << P _ 10 Y ™€ 240 which is 1111
number of bits specified by the right
0000
operand.
Binary Right Sh.lft Operatqr. The left A >> 2 will give 15
e operands value is moved right by the . .
shift right >> . . . which is 0000
number of bits specified by the right 1111
operand.
30

'&j ' tutorialspoint

YEAEYLEARMIMN

G

Example

Arduino

void loop ()
{

int a=10,b=20
int ¢ = 9;
c=a &b ;
c=a | b;
c=a b ;
c=a~Db;
c= a<<b;

c=a>»>b; }

Result
c=12
c=61
c= 49
c=-60
c=240
c=15
Compound Operators
Assume variable A holds 10 and variable B holds 20 then -
AT Op_erator Description Example
name simple
increment - _Increment operator, increases A++ will give 11
integer value by one
decrement B Decrement operator, decreases A-- will give 9
integer value by one
Add AND assignment operator. It |B +=Ais
compound _ . .
addition += adds right operand to the left operand | equivalent to B =
and assign the result to left operand | B+ A
Subtract AND assignment operator. .
. B-=Ais
compound _ It subtracts right operand from the .
. -= . equivalent to B =
subtraction left operand and assign the result to B- A
left operand

YEAEYLEARMIMN

'&j ' tutorialspoint

G

31

Arduino

compound
multiplication

Multiply AND assignment operator. It
multiplies right operand with the left
operand and assign the result to left
operand

B*= Ais
equivalent to B =
B* A

Divide AND assignment operator. It

B/=Ais

compound _ divides left operand with the right)
o I=) equivalent to B =
division operand and assign the result to left B/A
operand
Modulus AND assignment operator. It | B %= A s
compound 0= . : _
modulo 0= takes modulus using two operands | equivalent to B =
and assign the result to left operand | B % A
compound = bitwise inclusive OR and assignment | A |= 2 is same as
bitwise or operator A=A]2
compound _ N . A &= 2 is same as
&=
bitwise and Bitwise AND assignment operator A=ABR?2
Example

void loop ()
{

int a=10,b=20

int ¢ = 9;

a++;
a--;

b+=a;
b-=a;
b*=a;
b/=a;
a%=b;
al=b;
a&=b;

'&j ' tutorialspoint

YEAEYLEARMIMN

G

32

8. Arduino — Control Statements

Decision making structures require that the programmer specify one or more conditions
to be evaluated or tested by the program. It should be along with a statement or
statements to be executed if the condition is determined to be true, and optionally, other
statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages -

If condition If condition
is true is false

conditional '

code

Control Statements are elements in Source Code that control the flow of program
execution. They are:

o If statement

e If ...else statement

e If..else if ...else statement
e switch case statement

e Conditional Operator ? :

@' tutorialspoint 33

EIMPLYEAEYLEARMNINEG

http://cplus.about.com/od/glossary/g/glosource.htm

Arduino

if statement

It takes an expression in parenthesis and a statement or block of statements. If the
expression is true then the statement or block of statements gets executed otherwise
these statements are skipped.

Different forms of if statement

Form 1

if (expression)

statement;

You can use the if statement without braces { } if you have one statement.

Form 2

if (expression)

{

Block of statements;

iIf Statement — Execution Sequence

FALSE

Test expiration

Body of if

v
-

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 34

Arduino

Example

/* Global variable definition */
int A=5;
int B= 9 ;

Void setup ()

{

}
Void loop ()

{

/* check the boolean condition */
if (A > B) /* if condition is true then execute the following statement*/
A++;
/* check the boolean condition */

If ((A>B) & (B!=0)) /* if condition is true then execute the following
statement*/

{ A+=B;

B--;

If...else statement

An if statement can be followed by an optional else statement, which executes when the
expression is false.

if ... else Statement Syntax

if (expression)

{

Block of statements;

}

else

{

Block of statements;

}

'&j \tutorialspoint 35

EIMPLYEAEYLEARMNINEG

if...else Statement — Execution Sequence

|

FALSE

Test expiration

Body of if

Arduino

Example

Body of else

/* Global variable definition */
int A=5;
int B= 9 ;
Void setup ()
{
}
Void loop ()
{
/* check the boolean condition */

if (A > B) /* if condition is true then execute

the following statement*/

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

36

Arduino

if...else if .. .else statement

The if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...else if statement.

When using if...else if...else statements, keep in mind —

e An if can have zero or one else statement and it must come after any else if's.

e An if can have zero to many else if statements and they must come before the
else.

e Once an else if succeeds, none of the remaining else if or else statements will be
tested.

if ... else if ...else Statements Syntax

if (expression_1)

{
Block of statements;
}
else if(expression_2)
{
Block of statements;
}
else
{
Block of statements;
}

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 37

Arduino

if ... else if ... else Statement Execution Sequence

|

Test expiration 1

Test expiration 2

Body of if

Body of else if Test expiration 3

Body of else Default statement

N

Rest of code

Example

/* Global variable definition */

int A=5;
int B= 9 ;
int c=15;

Void setup ()

{

}
Void loop ()

{

/* check the boolean condition */

if (A > B) /* if condition is true then execute the following statement*/

'&j \tutorialspoint 38

EIMPLYEAEYLEARMNINEG

Arduino

A++;

}

/* check the boolean condition */

else if ((A==B)||(B < ¢)) /* if condition is true then execute the
following statement*/

{
C =B* A;
}
else
C++;
}
Switch Case Statement

Similar to the if statements, switch...case controls the flow of programs by allowing the
programmers to specify different codes that should be executed in various conditions. In
particular, a switch statement compares the value of a variable to the values specified in
the case statements. When a case statement is found whose value matches that of the
variable, the code in that case statement is run.

The break keyword makes the switch statement exit, and is typically used at the end of
each case. Without a break statement, the switch statement will continue executing the
following expressions ("falling-through") until a break, or the end of the switch statement
is reached.

Switch Case Statement Syntax

switch (variable)

{

case label:
// statements
break;

}

case label:

{
// statements

break;

}
default:

{

// statements

break;

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 39

Arduino

Switch Case Statement Execution Sequence

switch
(conditional expiration)

|

TRUE
e ¢ Block of statements

Case 1l
Test expiration

Case 2
Test expiration

> Block of statements

Case 3

Test expiration Block of statements

default
Block statements

Example

Here is a simple example with switch. Suppose we have a variable phase with only 3
different states (0, 1, or 2) and a corresponding function (event) for each of these states.
This is how we could switch the code to the appropriate routine:

switch (phase)

case 0: Lo(); break;
case 1: Mid(); break;

case 2: Hi(); break;

default: Message("Invalid state!");

'&j \tutorialspoint 40

EIMPLYEAEYLEARMNINEG

Arduino

Conditional Operator ? :

The conditional operator ? : is the only ternary operator in C.

? . conditional operator Syntax

expressionl ? expression2 : expression3

Expressionl is evaluated first. If its value is true, then expression2 is evaluated and
expression3 is ignored. If expressionl is evaluated as false, then expression3 evaluates
and expression2 is ignored. The result will be a value of either expression2 or expression3
depending upon which of them evaluates as True.

Conditional operator associates from right to left.

Example

/* Find max(a, b): */

max = (a>b) ?a: b;

/* Convert small letter to capital: */

/* (no parentheses are actually necessary) */

c=(c»> '"a'" & c<k="z")? (c-32):c¢c;

Rules of Conditional Operator

e expressionl must be a scalar expression; expression2 and expression3 must obey
one of the following rules:

¢ Both expressions have to be of arithmetic type.

e expression2 and expression3 are subjected to usual arithmetic conversions, which
determines the resulting type.

Both expressions have to be of void type. The resulting type is void.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 41

9. Arduino— Loops

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general form of a loop statement in most of the programming
languages -

Conditional Code

If condition
is true

If condition
is false

C programming language provides the following types of loops to handle looping
requirements.

¢ while loop

e do...while loop
e for loop

e nested loop

e infinite loop

while loop

while loops will loop continuously, and infinitely, until the expression inside the
parenthesis, () becomes false. Something must change the tested variable, or the while
loop will never exit.

@' tutorialspoint 42

EIMPLYEAEYLEARMNINEG

Arduino

while loop Syntax

while(expression)

{

Block of statements;

while loop Execution Sequence

Exit wile loop Test expiration A

Body of if

do...while loop

The do...while loop is similar to the while loop. In the while loop, the loop-continuation
condition is tested at the beginning of the loop before performed the body of the loop. The
do...while statement tests the loop-continuation condition after performed the loop body.
Therefore, the loop body will be executed at least once.

When a do...while terminates, execution continues with the statement after the while
clause. It is not necessary to use braces in the do...while statement if there is only one
statement in the body. However, the braces are usually included to avoid confusion
between the while and do...while statements.

do...while loop Syntax

do{
Block of statements;

} while (expression);

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 43

for loop

Arduino

A for loop executes statements a predetermined number of times. The control expression
for the loop is initialized, tested and manipulated entirely within the for loop parentheses.
It is easy to debug the looping behavior of the structure as it is independent of the activity

inside the loop.

Each for loop has up to three expressions, which determine its operation. The following
example shows general for loop syntax. Notice that the three expressions in the for loop

argument parentheses are separated with semicolons.

for loop Syntax

for (initialize; control; increment or decrement)

{
// statement block

}

Example

for(counter=2;counter <=9;counter++)

{

//statements block will executed 10 times

for loop Execution Sequence

Counter=2

Exit for loop Counter <=9

Body of for loop

|

AN

Counter= Counter +1

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

a4

Nested Loop

Arduino

C language allows you to use one loop inside another loop. The following example

illustrates the concept.

nested loop Syntax

for (initialize ;control; increment or decrement)

{
// statement block

for (initialize ;control; increment or decrement)

{
// statement block
}
}
Example

for(counter=0;counter<=9;counter++)
{
//statements block will executed 10 times
for(i=0;i<=99;i++)
{

//statements block will executed 100 times
¥

Infinite loop

It is the loop having no terminating condition, so the loop becomes infinite.

infinite loop Syntax
1. Using for loop

for (53)
{
// statement block

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

45

https://en.wikipedia.org/wiki/Control_flow#Loops

Arduino

2. Using while loop

while(1)
{
// statement block

}

3. Using do...while loop

do{
Block of statements;

} while(1);

MPLYEAEYLEARMNING

@ Mtutorialspoint 46

10. Arduino - Functions

Functions allow structuring the programs in segments of code to perform individual tasks.
The typical case for creating a function is when one needs to perform the same action
multiple times in a program.

Standa

rdizing code fragments into functions has several advantages:

Functions help the programmer stay organized. Often this helps to conceptualize
the program.

Functions codify one action in one place so that the function only has to be thought
about and debugged once.

This also reduces chances for errors in modification, if the code needs to be
changed.

Functions make the whole sketch smaller and more compact because sections of
code are reused many times.

They make it easier to reuse code in other programs by making it modular, and
using functions often makes the code more readable.

There are two required functions in an Arduino sketch or a program i.e. setup () and loop().

Other

functions must be created outside the brackets of these two functions.

The most common syntax to define a function is:

9

tutorialspoint 47

EIMPLYEAEYLEARMNINEG

Arduino

RETURN TYPE :

is the type of the Function name : argument :

value returned by is the identifier by which Parameters passed to
the function Can the function can be called function , any C data type
be any Cdata

type

Return type function name (argumentl , argument2 ,..)

{

Statements

H

Statements or function body

Function Declaration

A function is declared outside any other functions, above or below the loop function.

We can declare the function in two different ways -

1. The first way is just writing the part of the function called a function prototype above
the loop function, which consists of:

e Function return type
e Function name

e Function argument type, no need to write the argument name

Function prototype must be followed by a semicolon (;).

The following example shows the demonstration of the function declaration using the first
method.

Example
int sum_func (int x, int y) // function declaration
{
int z=0;
Z= X+y ;
return z; // return the value
}

void setup ()

48

MPLYEAEYLEARMNING

@ Mtutorialspoint

Arduino

Statements // group of statements

}
Void loop ()

{
int result =0 ;

result = Sum_func (5,6) ; // function call
}

2. The second part, which is called the function definition or declaration, must be declared
below the loop function, which consists of -

e Function return type
e Function name
e Function argument type, here you must add the argument name

e The function body (statements inside the function executing when the function is
called)

The following example demonstrates the declaration of function using the second method.

Example

int sum_func (int , int) ; // function prototype
void setup ()
{

Statements // group of statements

}
Void loop ()

{
int result =0 ;

result = Sum_func (5,6) ; // function call

}
int sum_func (int x, int y) // function declaration
{
int z=0;
Z= Xty ;
return z; // return the value
}

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 49

Arduino

The second method just declares the function above the loop function.

'@J tutorialspoint >0

11. Arduino — Strings

Strings are used to store text. They can be used to display text on an LCD or in the Arduino
IDE Serial Monitor window. Strings are also useful for storing the user input. For example,
the characters that a user types on a keypad connected to the Arduino.

There are two types of strings in Arduino programming:

e Arrays of characters, which are the same as the strings used in C programming.
e The Arduino String, which lets us use a string object in a sketch.

In this chapter, we will learn Strings, objects and the use of strings in Arduino sketches.
By the end of the chapter, you will learn which type of string to use in a sketch.

String Character Arrays

The first type of string that we will learn is the string that is a series of characters of the
type char. In the previous chapter, we learned what an array is; a consecutive series of
the same type of variable stored in memory. A string is an array of char variables.

A string is a special array that has one extra element at the end of the string, which always
has the value of 0 (zero). This is known as a "null terminated string".

String Character Array Example

This example will show how to make a string and print it to the serial monitor window.

Example

void setup()
{

char my_str[6]; // an array big enough for a 5 character string

Serial.begin(9600);

my_str[@] = 'H'; // the string consists of 5 characters
my_str[1l] = 'e’;
my_str[2] = '1l';
my_str[3] = '1';

my_str[4] 'o';
my_str[5] = 0; // 6th array element is a null terminator

Serial.println(my_str);

}
void loop()

1

@' tutorialspoint >1

EIMPLYEAEYLEARMNINEG

Arduino

The following example shows what a string is made up of; a character array with printable
characters and 0 as the last element of the array to show that this is where the string
ends. The string can be printed out to the Arduino IDE Serial Monitor window by using
Serial.printIin() and passing the name of the string.

This same example can be written in a more convenient way as shown below:

Example

void setup()

{
char my_str[] = "Hello";

Serial.begin(9600);

Serial.println(my_str);

}
void loop()

{
}

In this sketch, the compiler calculates the size of the string array and also automatically
null terminates the string with a zero. An array that is six elements long and consists of
five characters followed by a zero is created exactly the same way as in the previous
sketch.

Manipulating String Arrays

We can alter a string array within a sketch as shown in the following sketch.

Example

void setup()
{

char like[] = "I like coffee and cake"; // create a string

Serial.begin(9600);

// (1) print the string
Serial.println(like);

// (2) delete part of the string
like[13] = ©;
Serial.println(like);

// (3) substitute a word into the string

like[13] " '; // replace the null terminator with a space
like[18]
like[19] ‘e';

't'; // insert the new word

like[20] 'a';

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 52

Arduino

like[21] = ©; // terminate the string

Serial.println(like);

}
void loop()

{
}

Result

I like coffee and cake
I like coffee

I like coffee and tea

The sketch works in the following way.

(1) Creating and Printing the String

In the sketch given above, a new string is created and then printed for display in the Serial
Monitor window.

(2) Shortening the String

The string is shortened by replacing the 14% character in the string with a null terminating
zero (2). This is element number 13 in the string array counting from 0.

When the string is printed, all the characters are printed up to the new null terminating
zero. The other characters do not disappear; they still exist in the memory and the string
array is still the same size. The only difference is that any function that works with strings
will only see the string up to the first null terminator.

(3) Changing a Word in the String

Finally, the sketch replaces the word "cake" with "tea" (3). It first has to replace the null
terminator at like[13] with a space so that the string is restored to the originally created
format.

New characters overwrite "cak" of the word "cake" with the word "tea". This is done by
overwriting individual characters. The 'e' of "cake" is replaced with a new null terminating
character. The result is that the string is actually terminated with two null characters, the
original one at the end of the string and the new one that replaces the 'e' in "cake". This
makes no difference when the new string is printed because the function that prints the
string stops printing the string characters when it encounters the first null terminator.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint >3

Arduino

Functions to Manipulate String Arrays

The previous sketch manipulated the string in @ manual way by accessing individual
characters in the string. To make it easier to manipulate string arrays, you can write your
own functions to do so, or use some of the string functions from the C language library.

Functions Description

The String class, part of the core as of version 0019, allows you
to use and manipulate strings of text in more complex ways
than character arrays do. You can concatenate Strings, append
to them, search for and replace substrings, and more. It takes
more memory than a simple character array, but it is also more

String() useful.

For reference, character arrays are referred to as strings with
a small 's’, and instances of the String class are referred to as
Strings with a capital S. Note that constant strings, specified in
"double quotes" are treated as char arrays, not instances of the
String class

charAt() Access a particular character of the String.

Compares two Strings, testing whether one comes before or
after the other, or whether they are equal. The strings are
compareTo() compared character by character, using the ASCII values of the
characters. That means, for example, 'a' comes before 'b' but
after 'A'. Numbers come before letters.

concat() Appends the parameter to a String.

Converts the contents of a string as a C-style, null-terminated
string. Note that this gives direct access to the internal String
buffer and should be used with care. In particular, you should
c_str() never modify the string through the pointer returned. When
you modify the String object, or when it is destroyed, any
pointer previously returned by c_str() becomes invalid and
should not be used any longer.

Tests whether or not a String ends with the characters of

endsWith() another String.
Compares two strings for equality. The comparison is case-
equals() sensitive, meaning the String "hello" is not equal to the String

"HELLO".

Compares two strings for equality. The comparison is not case-
equalsIgnoreCase() | sensitive, meaning the String("hello") is equal to the
String("HELLO").

getBytes() Copies the string's characters to the supplied buffer.

indexOf() Locates a character or String within another String. By default,
it searches from the beginning of the String, but can also start

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint >4

Arduino

from a given index, allowing to locate all instances of the
character or String.

Locates a character or String within another String. By default,
it searches from the end of the String, but can also work

lastIndexOf() backwards from a given index, allowing to locate all instances
of the character or String.
length() Returns the length of the String, in characters. (Note that this
9 does not include a trailing null character.)
Modify in place, a string removing chars from the provided
remove() index to the end of the string or from the provided index to
index plus count.
The String replace() function allows you to replace all instances
replace() of a given character with another character. You can also use
P replace to replace substrings of a string with a different
substring.
The String reserve() function allows you to allocate a buffer in
reserve() memory f i . -
y for manipulating strings.
Sets a character of the String. Has no effect on indices outside
setCharAt() the existing length of the String.
startsWith() Tests whether or not a String starts with the characters of
another String.
toCharArray() Copies the string's characters to the supplied buffer.

substring()

Get a substring of a String. The starting index is inclusive (the
corresponding character is included in the substring), but the
optional ending index is exclusive (the corresponding character
is not included in the substring). If the ending index is omitted,
the substring continues to the end of the String.

toInt()

Converts a valid String to an integer. The input string should
start with an integer number. If the string contains non-integer
numbers, the function will stop performing the conversion.

toFloat()

Converts a valid String to a float. The input string should start
with a digit. If the string contains non-digit characters, the
function will stop performing the conversion. For example, the
strings "123.45", "123", and "123fish" are converted to 123.45,
123.00, and 123.00 respectively. Note that "123.456" is
approximated with 123.46. Note too that floats have only 6-7
decimal digits of precision and that longer strings might be
truncated.

toLowerCase()

Get a lower-case version of a String. As of 1.0, toLowerCase()
modifies the string in place rather than returning a new.

toUpperCase()

Get an upper-case version of a String. As of 1.0, toUpperCase()
modifies the string in place rather than returning a new one.

tutorialspoint

0
w EIMPLYEASYLEARNING

55

Arduino

Get a version of the String with any leading and trailing
trim() whitespace removed. As of 1.0, trim() modifies the string in
place rather than returning a new one.

The next sketch uses some C string functions.

Example

void setup()

{
char str[] = "This is my string"; // create a string
char out_str[40]; // output from string functions placed here
int num; // general purpose integer
Serial.begin(9600);

// (1) print the string
Serial.println(str);

// (2) get the length of the string (excludes null terminator)
num = strlen(str);
Serial.print("String length is: ");

Serial.println(num);

// (3) get the length of the array (includes null terminator)
num = sizeof(str); // sizeof() is not a C string function
Serial.print("Size of the array: ");

Serial.println(num);

// (4) copy a string
strcpy(out_str, str);

Serial.println(out_str);

// (5) add a string to the end of a string (append)
strcat(out_str, " sketch.");
Serial.println(out_str);
num = strlen(out_str);

Serial.print("String length is: ");

Serial.println(num);

'&j \tutorialspoint 26

EIMPLYEAEYLEARMNINEG

Arduino

num = sizeof(out_str);
Serial.print("Size of the array out_str[]: ");
Serial.println(num);

}

void loop()

{

}

Result

This is my string

String length is: 17

Size of the array: 18

This is my string

This is my string sketch.
String length is: 25

Size of the array out_str[]: 40

The sketch works in the following way.

(1) Print the String

The newly created string is printed to the Serial Monitor window as done in previous
sketches.

(2) Get the Length of the String

The strlen() function is used to get the length of the string. The length of the string is for
the printable characters only and does not include the null terminator.

The string contains 17 characters, so we see 17 printed in the Serial Monitor window.

(3) Get the Length of the Array

The operator sizeof() is used to get the length of the array that contains the string. The
length includes the null terminator, so the length is one more than the length of the string.

sizeof() looks like a function, but technically is an operator. It is not a part of the C string
library, but was used in the sketch to show the difference between the size of the array
and the size of the string (or string length).

(4) Copy a String

The strcpy() function is used to copy the str[] string to the out_num([] array. The strcpy()
function copies the second string passed to it into the first string. A copy of the string now
exists in the out_num[] array, but only takes up 18 elements of the array, so we still have

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 57

Arduino

22 free char elements in the array. These free elements are found after the string in
memory.

The string was copied to the array so that we would have some extra space in the array
to use in the next part of the sketch, which is adding a string to the end of a string.

(5) Append a String to a String (Concatenate)

The sketch joins one string to another, which is known as concatenation. This is done using
the strcat() function. The strcat() function puts the second string passed to it onto the end
of the first string passed to it.

After concatenation, the length of the string is printed to show the new string length. The
length of the array is then printed to show that we have a 25-character long string in a 40
element long array.

Remember that the 25-character long string actually takes up 26 characters of the array
because of the null terminating zero.

Array Bounds

When working with strings and arrays, it is very important to work within the bounds of
strings or arrays. In the example sketch, an array was created, which was 40 characters
long, in order to allocate the memory that could be used to manipulate strings.

If the array was made too small and we tried to copy a string that is bigger than the array
to it, the string would be copied over the end of the array. The memory beyond the end
of the array could contain other important data used in the sketch, which would then be
overwritten by our string. If the memory beyond the end of the string is overrun, it could
crash the sketch or cause unexpected behavior.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 58

12. Arduino — String Object

The second type of string used in Arduino programming is the String Object.

What is an Object?

An object is a construct that contains both data and functions. A String object can be
created just like a variable and assigned a value or string. The String object contains
functions (which are called "methods" in object oriented programming (OOP)) which
operate on the string data contained in the String object.

The following sketch and explanation will make it clear what an object is and how the
String object is used.

Example

void setup()

{ String my_str = "This is my string.";
Serial.begin(9600);

// (1) print the string
Serial.println(my_str);

// (2) change the string to upper-case
my_str.toUpperCase();
Serial.println(my_str);

// (3) overwrite the string

my_str = "My new string.";
Serial.println(my_str);

// (4) replace a word in the string
my_str.replace("string"”, "Arduino sketch");
Serial.println(my_str);

// (5) get the length of the string
Serial.print("String length is: ");
Serial.println(my_str.length());

}
void loop()

1

@' tutorialspoint 59

EIMPLYEAEYLEARMNINEG

Arduino

Result

This is my string.
THIS IS MY STRING.

My new string.

My new Arduino sketch.

String length is: 22

A string object is created and assigned a value (or string) at the top of the sketch.

String my_str = "This is my string." ;

This creates a String object with the name my_str and gives it a value of "This is my
string.".

This can be compared to creating a variable and assigning a value to it such as an integer:

int my_var = 102;

The sketch works in the following way.

(1) Printing the String

The string can be printed to the Serial Monitor window just like a character array string.

(2) Convert the String to Upper-case

The string object my_str that was created, has a number of functions or methods that can
be operated on it. These methods are invoked by using the objects name followed by the
dot operator (.) and then the name of the function to use.

my_str.toUpperCase();

The toUpperCase() function operates on the string contained in the my_str object which
is of type String and converts the string data (or text) that the object contains to upper-
case characters. A list of the functions that the String class contains can be found in the
Arduino String reference. Technically, String is called a class and is used to create String
objects.

(3) Overwrite a String

The assignment operator is used to assign a new string to the my_str object that replaces
the old string.

my_str = "My new string." ;

The assignment operator cannot be used on character array strings, but works on String
objects only.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 60

Arduino

(4) Replacing a Word in the String

The replace() function is used to replace the first string passed to it by the second string
passed to it. replace() is another function that is built into the String class and so is
available to use on the String object my_str.

(5) Getting the Length of the String

Getting the length of the string is easily done by using length(). In the example sketch,
the result returned by length() is passed directly to Serial.printin() without using an
intermediate variable.

When to Use a String Object

A String object is much easier to use than a string character array. The object has built-
in functions that can perform a nhumber of operations on strings.

The main disadvantage of using the String object is that it uses a lot of memory and can
quickly use up the Arduinos RAM memory, which may cause Arduino to hang, crash or
behave unexpectedly. If a sketch on an Arduino is small and limits the use of objects, then
there should be no problems.

Character array strings are more difficult to use and you may need to write your own
functions to operate on these types of strings. The advantage is that you have control on
the size of the string arrays that you make, so you can keep the arrays small to save
memory.

You need to make sure that you do not write beyond the end of the array bounds with
string arrays. The String object does not have this problem and will take care of the string
bounds for you, provided there is enough memory for it to operate on. The String object
can try to write to memory that does not exist when it runs out of memory, but will never
write over the end of the string that it is operating on.

Where Strings are Used

In this chapter we studied about the strings, how they behave in memory and their
operations.

The practical uses of strings will be covered in the next part of this course when we study
how to get user input from the Serial Monitor window and save the input in a string.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 61

13. Arduino—Time

Arduino provides four different time manipulation functions. They are-

e delay () function
e delayMicroseconds () function
e millis () function

e micros () function

delay() function

The way the delay() function works is pretty simple. It accepts a single integer (or
number) argument. This number represents the time (measured in milliseconds). The
program should wait until moving on to the next line of code when it encounters this
function. However, the problem is, the delay() function is not a good way to make your
program wait, because it is known as a “blocking” function.

delay() function Syntax

delay (ms) ;

where, ms is the time in milliseconds to pause (unsigned long).

Example

/* Flashing LED

* Turns on and off a light emitting diode(LED) connected to a digital
* pin, in intervals of 2 seconds. *
*/
int ledPin = 13; // LED connected to digital pin 13
void setup() {
pinMode(ledPin, OUTPUT); // sets the digital pin as output

}
void loop()

{
digitalWrite(ledPin, HIGH); // sets the LED on
delay(1000); // waits for a second
digitalWrite(ledPin, LOW); // sets the LED off
delay(1000); // waits for a second

@' tutorialspoint 62

EIMPLYEAEYLEARMNINEG

Arduino

delayMicroseconds() function

The delayMicroseconds() function accepts a single integer (or number) argument. This
number represents the time and is measured in microseconds. There are a thousand
microseconds in a millisecond, and a million microseconds in a second.

Currently, the largest value that can produce an accurate delay is 16383. This may change
in future Arduino releases. For delays longer than a few thousand microseconds, you
should use the delay() function instead.

delay() function Syntax

delayMicroseconds (us) ;

where, us is the number of microseconds to pause (unsigned int)

Example

/* Flashing LED
* Turns on and off a light emitting diode(LED) connected to a digital
* pin, in intervals of 1 seconds. *
*/
int ledPin = 13; // LED connected to digital pin 13
void setup() {
pinMode(ledPin, OUTPUT); // sets the digital pin as output
}
void loop() {
digitalWrite(ledPin, HIGH); // sets the LED on
delayMicroseconds(1000); // waits for a second
digitalWrite(ledPin, LOW); // sets the LED off

delayMicroseconds (1000); // waits for a second

millis() function

This function is used to return the number of milliseconds at the time, the Arduino board
begins running the current program. This number overflows i.e. goes back to zero after
approximately 50 days.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 63

Arduino

millis() function Syntax

millis () ;

This function returns milliseconds from the start of the program.

Example

unsigned long time;

void setup(){
Serial.begin(9600);

}
void loop()

{
Serial.print("Time:");
time = millis();

//prints time since program started

Serial.println(time);
// wait a second so as not to send massive amounts of data

delay(1000);

micros() function

The micros() function returns the number of microseconds from the time, the Arduino
board begins running the current program. This number overflows i.e. goes back to zero
after approximately 70 minutes. On 16 MHz Arduino boards (e.g. Duemilanove and Nano),
this function has a resolution of four microseconds (i.e. the value returned is always a
multiple of four). On 8 MHz Arduino boards (e.g. the LilyPad), this function has a resolution
of eight microseconds.

micros() function Syntax

micros () ;

This function returns number of microseconds since the program started (unsigned long)

Example

unsigned long time;

void setup(){
Serial.begin(9600);

}

void loop(){
Serial.print("Time:");

time = micros();
//prints time since program started

64

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

Arduino

Serial.println(time);
// wait a second so as not to send massive amounts of data

delay(1000);
}

@ Mtutorialspoint

EIMPLYEAEBEYLEARNING

65

14. Arduino — Arrays

An array is a consecutive group of memory locations that are of the same type. To refer
to a particular location or element in the array, we specify the name of the array and the
position number of the particular element in the array.

The illustration given below shows an integer array called C that contains 11 elements.
You refer to any one of these elements by giving the array name followed by the particular
element’s position number in square brackets ([]). The position number is more formally
called a subscript or index (this number specifies the number of elements from the
beginning of the array). The first element has subscript 0 (zero) and is sometimes called
the zeros element.

Thus, the elements of array C are C[0] (pronounced “C sub zero”), C[1], C[2] and so on.
The highest subscript in array C is 10, which is 1 less than the number of elements in the
array (11). Array names follow the same conventions as other variable names.

& Name of the array is C

c[o]
Position number of the C[1]

Element within the array
Cl2]

Cl3]

Cl4] € Value

Name of individual
array element > C[5]

cl6]

Cl7]

C[8]
CI9]

C[10]

A subscript must be an integer or integer expression (using any integral type). If a program
uses an expression as a subscript, then the program evaluates the expression to determine
the subscript. For example, if we assume that variable a is equal to 5 and that variable b
is equal to 6, then the statement adds 2 to array element C[11].

A subscripted array name is an lvalue, it can be used on the left side of an assignment,
just as non-array variable names can.

EIMPLYEAEYLEARMNINEG

@' Mtutorialspoint 66

Arduino

Let us examine array C in the given figure, more closely. The name of the entire array is
C. Its 11 elements are referred to as C[0] to C[10]. The value of C[0] is -45, the value of
C[1] is 6, the value of C[2] is O, the value of C[7] is 62, and the value of C[10] is 78.

To print the sum of the values contained in the first three elements of array C, we would
write:

Serial.print (C[@] +C[11 +C[21);

To divide the value of C[6] by 2 and assign the result to the variable x, we would write:

x=C[61]/2;

Declaring Arrays

Arrays occupy space in memory. To specify the type of the elements and the number of
elements required by an array, use a declaration of the form:

type arrayName [arraySize] ;

The compiler reserves the appropriate amount of memory. (Recall that a declaration,
which reserves memory is more properly known as a definition). The arraySize must be
an integer constant greater than zero. For example, to tell the compiler to reserve 11
elements for integer array C, use the declaration:

int C[12]; // C is an array of 12 integers

Arrays can be declared to contain values of any non-reference data type. For example, an
array of type string can be used to store character strings.

Examples Using Arrays

This section gives many examples that demonstrate how to declare, initialize and
manipulate arrays.

Example 1: Declaring an Array and using a Loop to Initialize the Array’s
Elements

The program declares a 10-element integer array n. Lines a-b use a For statement to
initialize the array elements to zeros. Like other automatic variables, automatic arrays are
not implicitly initialized to zero. The first output statement (line c) displays the column
headings for the columns printed in the subsequent for statement (lines d-e), which prints
the array in tabular format.

Example

int n[10] ; // n is an array of 10 integers

void setup ()

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 67

Arduino

{
}
void loop ()
{
for (int 1 = 0; i < 10; ++i) // initialize elements of array n to @
{
n[i] =9; // set element at location i to ©
Serial.print (i) ;
Serial.print (°\r’) ;
}
for (int j = 90; j < 10; ++j) // output each array element's value
{

Serial.print (n[j]) ;
Serial.print (°\r’) ;

F}

Result: It will produce the following result:

Element Value

OoooNOOCULPA~,WNRFO
ecNeoNeolololNolNollolNolle]

Example 2: Initializing an Array in a Declaration with an Initializer List

The elements of an array can also be initialized in the array declaration by following the
array name with an equal-to sign and a brace-delimited comma-separated list of
initializers. The program uses an initializer list to initialize an integer array with 10 values
(line a) and prints the array in tabular format (lines b-c).

Example

// n is an array of 10 integers
int n[10] = { 32, 27, 64, 18, 95, 14, 908, 70, 60, 37 } ;

void setup ()

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 68

Arduino

{
}
void loop ()
{
for (int i = @; i < 10; ++i) // initialize elements of array n to ©
{
Serial.print (i) ;
Serial.print (°\r’) ;
}
for (int j = ©; j < 10; ++j) // output each array element's value
{
Serial.print (n[j]) ;
Serial.print (°\r’) ;
}}

Result: It will produce the following result:

Element Value

32
27
64
18
95
14
90
70
60
37

OoOoNOOTUTPh, WNHO

Example 3: Summing the Elements of an Array

Often, the elements of an array represent a series of values to be used in a calculation.
For example, if the elements of an array represent exam grades, a professor may wish to
total the elements of the array and use that sum to calculate the class average for the
exam. The program sums the values contained in the 10-element integer array a.

Example

const int arraySize = 10; // constant variable indicating size of array
int a[arraySize] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

int total = ©;

void setup ()

{

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 69

Arduino

}

void loop ()

{

// sum contents of array a

for (int i = @; i < arraySize; ++i)

total += a[i];

Serial.print (“Total of array elements :) ;

Serial.print(total) ;

}

Result: It will produce the following result:

Total of array elements: 849

Arduino — Passing Arrays to Functions

To pass an array argument to a function, specify the name of the array without any
brackets. For example, if an array hourlyTemperatures has been declared as the
function, the call passes array hourlyTemperatures and its size to function modifyArray.

Important Points

Here is a list of some important points that you need to know while passing arrays to
functions:

When passing an array to a function, normally the array size is passed as well, so
the function can process the specific number of elements in the array. Otherwise,
we would need to build this knowledge into the called function itself or, worse yet,
place the array size in a global variable.

C++ passes arrays to functions by reference i.e. the called functions can modify
the element values in the callers’ original arrays.

The value of the name of the array is the address in the computer’'s memory of the
first element of the array. Since the starting address of the array is passed, the
called function knows precisely where the array is stored in the memory. Therefore,
when the called function modifies array elements in its function body, it is modifying
the actual elements of the array in their original memory locations.

Although the entire arrays are passed by reference, individual array elements are
passed by value exactly as simple variables are.

To pass an element of an array to a function, use the subscripted name of the array
element as an argument in the function call.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 70

Arduino

e For a function to receive an array through a function call, the function’s parameter
list must specify that the function expects to receive an array.

e For example, the function header for function modifyArray might be written as:

void modifyArray(int b[], int arraySize)

The statement indicates that modifyArray expects to receive the address of an array
of integers in parameter b and the number of array elements in parameter
arraySize. The array’s size is not required in the array brackets. If it is included,
the compiler ignores it; thus, arrays of any size can be passed to the function.

e C++ passes arrays to the functions by reference. When the called function uses
the array name b, it refers to the actual array in the caller (i.e.,
arrayhourlyTemperatures discussed at the beginning of this section).

Note the strange appearance of the function prototype for modifyArray.

void modifyArray(int [] , int) ;

This prototype could have been written in the following way for documentation purposes.

void modifyArray(int anyArrayName[], int anyVariableName) ;

However, C++ compilers ignore variable names in prototypes. Remember, the prototype
tells the compiler the number of arguments and the type of each argument in the order in
which the arguments are expected to appear.

The program in the next example demonstrates the difference between passing an entire
array and passing an array element.

Example

void modifyArray(int [], int); // appears strange; array and size

void modifyElement(int); // receive array element value

void setup ()
{

Serial.begin (9600);

const int arraySize = 5; // size of array a

int a[arraySize] ={ 0, 1, 2, 3, 4 }; // initialize array a
Serial.print ("Effects of passing entire array by reference:") ;
// output original array elements
for (int i = @; i < arraySize ; ++i)

Serial.print (a[i]) ;

71

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

Arduino

Serial.print ("\r") ;

Serial.print ("The values of the modified array are:\n");

// output modified array elements

for (int j = @; j < arraySize; ++j)

Serial.print (a[j]) ;

Serial.print ("\r") ;

Serial.print ("\r\rEffects of passing array element by value:");
Serial.print ("\ra[3] before modifyElement: ");

Serial.print (a[3]);

Serial.print ("\ra[3] after modifyElement: ");

Serial.print (a[3]);
¥
void loop ()

{

// in function modifyArray, "b" points to the original array "a" in memory
void modifyArray(int b[], int sizeOfArray)
{
// multiply each array element by 2
for (int k = @ ; k < sizeOfArray ; ++k)
b[k] *= 2;
} // end function modifyArray
// in function modifyElement, "e" is a local copy of
// array element a[3] passed from main
void modifyElement(int e)
{
// multiply parameter by 2
Serial.print ("Value of element in modifyElement: ");
Serial.print ((e *=2));

} // end function modifyElement

Result

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

72

Arduino

Effects of passing entire array by reference:01234

The values of the modified array are:01234

Effects of passing array element by value:
a[3] before modifyElement: 3
a[3] after modifyElement: 3

$ is not a hexadecimal digit

f is a hexadecimal digit

Multidimensional Arrays

Arrays with two dimensions (i.e., subscripts) often represent tables of values consisting of

information arranged in rows and columns.

Following are the key features of multidimensional arrays:

e To identify a particular table element, we must specify two subscripts.

e By convention, the first identifies the element’s row and the second identifies the

element’s column.

e Arrays that require two subscripts to identify a particular element are called two-

dimensional arrays or 2-D arrays.

e Arrays with two or more dimensions are known as multidimensional arrays and can

have more than two dimensions.

The following figure illustrates a two-dimensional array, a. The array contains three rows
and four columns, so it is a 3-by-4 array. In general, an array with m rows and n columns

is called an m-by-n array.

Column 0 Column 1 Column 2

Column 3

Row O

Row 1

Row 2

Column subscript
Row subscript
Array name

@' tutorialspoint

EIMPLYEAEYLEARMNINEG

73

Arduino

Every element in array a is identified by an element name of the form a[i][j]. Here, a is
the name of the array, and i and j are the subscripts that uniquely identify each element
in a. Notice that the names of the elements in row 0 all have a first subscript of 0; the
names of the elements in column 3 all have a second subscript of 3.

A multidimensional array can be initialized in its declaration much like a one-dimensional
array. For example, a two-dimensional array b with values 1 and 2 in its row 0 elements
and values 3 and 4 in its row 1 elements could be declared and initialized as follows:

intb[21[21={{1,2%} {3, 4} };

The values are grouped by row in braces. Therefore, 1 and 2 initialize b[0][0] and b[0][1],
respectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. If there are not
enough initializers for a given row, the remaining elements of that row are initialized to 0.
Thus, the following declaration initializes b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and
b[1][1] to 4.

intb[2][2]={{1}, {3 4} }

Example

Here is an example that demonstrates initializing two-dimensional arrays in declarations.

e Lines a-c declare three arrays, each with two rows and three columns.

e The declaration of arrayl (line a) provides six initializers in the two sub lists. The
first sub list initializes row 0 of the array to the values 1, 2 and 3; the second sub
list initializes row 1 of the array to the values 4, 5 and 6.

e If the braces around each sub-list are removed from the arrayl1 initializer list, the
compiler initializes the elements of row 0 followed by the elements of row 1,
yielding the same result.

e The declaration of array2 (line b) provides only five initializers.

e The initializers are assigned to row 0, then row 1. Any elements that do not have
an explicit initializer are initialized to zero, so array2[1][2] is initialized to zero.

e The declaration of array3 (line ¢) provides three initializers in two sub lists.

e The sub list for row 0 explicitly initializes the first two elements of row 0 to 1 and
2; the third element is implicitly initialized to zero.

e The sub list for row 1 explicitly initializes the first element to 4 and implicitly
initializes the last two elements to zero.

e The program calls function printArray to output each array’s elements. Notice that
the function prototype (line k) specify the parameter const int a[][columns].

¢ When a function receives a one-dimensional array as an argument, the array
brackets are empty in the function’s parameter list.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 74

Arduino

e The size of a two-dimensional array’s first dimension (i.e., the number of rows) is
not required either, but all the subsequent dimension sizes are required. The
compiler uses these sizes to determine the locations in memory of elements in
multidimensional arrays.

e All array elements are stored consecutively in memory, regardless of the number

of dimensions. In a two-dimensional array, row 0 is stored in memory followed by
row 1.

Example

void printArray (const int [][3]); // prototype
const int rows = 2;
const int columns = 3;

int arrayl[rows][columns]

{ { 1) 2) 3 }J { 4) 5) 6 } };
{ 1J 2) 3) 4J 5 }.;

({1, 2}, {4} }

int array2[rows][columns]

int array3[rows][columns]

void setup ()

{
}
void loop ()
{
Serial.print ("Values in arrayl by row are: ") ;
Serial.print (“\r”) ;
printArray(arrayl) ;
Serial.print ("Values in array2 by row are: ") ;
Serial.print (“\r”) ;
printArray(array2) ;
Serial.print ("Values in array3 by row are: ") ;
Serial.print (“\r”) ;
printArray(array3) ;
}
// output array with two rows and three columns
void printArray(const int a[][columns])
{
// loop through array's rows
for (int 1 = 9; 1 < rows; ++i)
{
// loop through columns of current row

for (int j = @; j < columns; ++j)

'&j \tutorialspoint 7>

EIMPLYEAEYLEARMNINEG

Arduino

Serial.print (a[l 1 1[J 1);
Serial.print (“\r”) ; // start new line of output
} // end outer for

} // end function printArray

Result

Values in arrayl by row are:
123
456
Values in array2 by row are:
123
450
Values in array3 by row are:
120
4 00

Note: Each row is a one-dimensional array. To locate an element in a particular row, the
function must know exactly how many elements are in each row so it can skip the proper
number of memory locations when accessing the array. Thus, when accessing a[1][2], the
function knows to skip row 0’s three elements in memory to get to row 1. Then, the
function accesses element 2 of that row. Many common array manipulations use FOR
statements.

For example, the following FOR statement sets all the elements in row 2 of array a.

for (int column = ©; column < 4; ++column)

a[2][column] = ©;

The FOR statement varies only the second subscript (i.e., the column subscript). The
preceding FOR statement is equivalent to the following assignment statements:

)

a[2][o]
a[2][1]
a[2][2]
a[2][3]

)

-

0
0
9:
9:

)

The following Nested FOR statement determines the total of all the elements in array a:

total = 0;
for (int row = ©; row < 3; ++row)
for (int column = @; column < 4; ++column)

total += a[row][column];

'&j \tutorialspoint 76

EIMPLYEAEYLEARMNINEG

Arduino

The FOR statement totals the elements of the array one row at a time. The outer FOR
statement begins by setting the row (i.e., the row subscript) to 0. Therefore, the elements
of row 0 may be totaled by the inner FOR statement.

The outer FOR statement then increments row to 1, so that the elements of row 1 can be
totaled. Then, the outer FOR statement increments row to 2, so that, the elements of row
2 can be totaled. When the nested FOR statement terminates, the total contains the sum
of all the array elements.

'&j \tutorialspoint 77

EIMPLYEAEYLEARMNINEG

Arduino

Arduino - Function Libraries

@F}JFF,‘CE‘?!?EE’EQE 78

15. Arduino—1/0 Functions

The pins on the Arduino board can be configured as either inputs or outputs. We will
explain the functioning of the pins in those modes. It is important to note that a majority
of Arduino analog pins, may be configured, and used, in exactly the same manner as
digital pins.

Pins Configured as INPUT

Arduino pins are by default configured as inputs, so they do not need to be explicitly
declared as inputs with pinMode() when you are using them as inputs. Pins configured
this way are said to be in a high-impedance state. Input pins make extremely small
demands on the circuit that they are sampling, equivalent to a series resistor of 100
megaohm in front of the pin.

This means that it takes very little current to switch the input pin from one state to another.
This makes the pins useful for such tasks as implementing a capacitive touch sensor or
reading an LED as a photodiode.

Pins configured as pinMode(pin, INPUT) with nothing connected to them, or with wires
connected to them that are not connected to other circuits, report seemingly random
changes in pin state, picking up electrical noise from the environment, or capacitively
coupling the state of a nearby pin.

Pull-up Resistors

Pull-up resistors are often useful to steer an input pin to a known state if no input is
present. This can be done by adding a pull-up resistor (to +5V), or a pull-down resistor
(resistor to ground) on the input. A 10K resistor is a good value for a pull-up or pull-down
resistor.

Using Built-in Pull-up Resistor with Pins Configured as Input

There are 20,000 pull-up resistors built into the Atmega chip that can be accessed from
software. These built-in pull-up resistors are accessed by setting the pinMode() as
INPUT_PULLUP. This effectively inverts the behavior of the INPUT mode, where HIGH
means the sensor is OFF and LOW means the sensor is ON. The value of this pull-up
depends on the microcontroller used. On most AVR-based boards, the value is guaranteed
to be between 20kQ2 and 50kQ. On the Arduino Due, it is between 50kQ and 150kQ. For
the exact value, consult the datasheet of the microcontroller on your board.

When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should
be connected to the ground. In case of a simple switch, this causes the pin to read HIGH
when the switch is open and LOW when the switch is pressed. The pull-up resistors provide
enough current to light an LED dimly connected to a pin configured as an input. If LEDs in
a project seem to be working, but very dimly, this is likely what is going on.

@' tutorialspoint &

EIMPLYEAEYLEARMNINEG

http://www.arduino.cc/playground/Code/CapacitiveSensor
http://www.arduino.cc/playground/Learning/LEDSensor

Arduino

Same registers (internal chip memory locations) that control whether a pin is HIGH or
LOW control the pull-up resistors. Consequently, a pin that is configured to have pull-up
resistors turned on when the pin is in INPUTmode, will have the pin configured as HIGH if
the pin is then switched to an OUTPUT mode with pinMode(). This works in the other
direction as well, and an output pin that is left in a HIGH state will have the pull-up resistor
set if switched to an input with pinMode().

Example

pinMode (3, INPUT) ; // set pin to input without using built in pull up resistor

pinMode (5, INPUT_PULLUP) ; // set pin to input using built in pull up resistor

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This
means that they can provide a substantial amount of current to other circuits. Atmega
pins can source (provide positive current) or sink (provide negative current) up to 40 mA
(milliamps) of current to other devices/circuits. This is enough current to brightly light up
an LED (do not forget the series resistor), or run many sensors but not enough current to
run relays, solenoids, or motors.

Attempting to run high current devices from the output pins, can damage or destroy the
output transistors in the pin, or damage the entire Atmega chip. Often, this results in a
"dead" pin in the microcontroller but the remaining chips still function adequately. For this
reason, it is a good idea to connect the OUTPUT pins to other devices through 470Q or 1k
resistors, unless maximum current drawn from the pins is required for a particular
application.

pinMode() Function

The pinMode() function is used to configure a specific pin to behave either as an input or
an output. It is possible to enable the internal pull-up resistors with the mode
INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal pull-ups.

pinMode () Function Syntax

Void setup ()
{

pinMode (pin , mode);

e pin: the number of the pin whose mode you wish to set
e mode: INPUT, OUTPUT, or INPUT_PULLUP.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 80

https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants

Arduino

Example

int button = 5 ; // button connected to pin 5
int LED = 6; // LED connected to pin 6
void setup ()

{

pinMode(button , INPUT_PULLUP); // set the digital pin as input with pull-up
resistor

pinMode(button , OUTPUT); // set the digital pin as output

void setup ()

{
If (digitalRead(button)==LOW) // if button pressed
{
digitalWrite(LED,HIGH); // turn on led
delay(500); // delay for 500 ms
digitalWrite(LED,LOW); // turn off led
delay(500); // delay for 500 ms
}
}
digitalWrite() Function

The digitalWrite() function is used to write a HIGH or a LOW value to a digital pin. If the
pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the
corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW. If the
pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the
internal pullup on the input pin. It is recommended to set the pinMode()
to INPUT_PULLUP to enable the internal pull-up resistor.

If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when calling
digitalWrite(HIGH), the LED may appear dim. Without explicitly setting pinMode(),
digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current-
limiting resistor.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 81

https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/Constants
https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/PinMode

Arduino

digitalWrite() Function Syntax

Void loop()

{
digitalWrite (pin ,value);

e pin: the number of the pin whose mode you wish to set
e value: HIGH, or LOW.

Example

int LED = 6; // LED connected to pin 6
void setup ()

{
pinMode(LED, OUTPUT); // set the digital pin as output

}

void setup ()

{ digitalWrite(LED,HIGH); // turn on led
delay(500); // delay for 500 ms
digitalWrite(LED,LOW); // turn off led
delay(500); // delay for 500 ms

analogRead() function

Arduino is able to detect whether there is a voltage applied to one of its pins and report it
through the digitalRead() function. There is a difference between an on/off sensor (which
detects the presence of an object) and an analog sensor, whose value continuously
changes. In order to read this type of sensor, we need a different type of pin.

In the lower-right part of the Arduino board, you will see six pins marked “Analog In”.
These special pins not only tell whether there is a voltage applied to them, but also its
value. By using the analogRead() function, we can read the voltage applied to one of the
pins.

This function returns a number between 0 and 1023, which represents voltages between
0 and 5 volts. For example, if there is a voltage of 2.5 V applied to pin number 0,
analogRead(0) returns 512.

analogRead() function Syntax

analogRead(pin);

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 82

https://www.arduino.cc/en/Reference/Constants

Arduino

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on

the Mini and Nano, 0 to 15 on the Mega)

Example

int analogPin = 3;//potentiometer wiper (middle terminal) connected to analog
pin 3
int val = 0; // variable to store the value read

void setup()
{
Serial.begin(9600); // setup serial

}
void loop()

{
val = analogRead(analogPin); // read the input pin

Serial.println(val); // debug value

MPLYEAEYLEARMNINEG

'@J Mtutorialspoint

83

16. Arduino — Advanced I/O Function

In this chapter, we will learn some advanced Input and Output Functions.

analogReference() Function

Configures the reference voltage used for analog input (i.e. the value used as the top of
the input range). The options are:

e DEFAULT: The default analog reference of 5 volts (on 5V Arduino boards) or 3.3
volts (on 3.3V Arduino boards)

e INTERNAL: An built-in reference, equal to 1.1 volts on the ATmegal68 or
ATmega328 and 2.56 volts on the ATmega8 (not available on the Arduino Mega)

e INTERNAL1V1: A built-in 1.1V reference (Arduino Mega only)
e INTERNAL2V56: A built-in 2.56V reference (Arduino Mega only)

e EXTERNAL: The voltage applied to the AREF pin (0 to 5V only) is used as the
reference

analogReference() Function Syntax

analogReference (type);

type: can use any type of the follow (DEFAULT, INTERNAL, INTERNAL1V1,
INTERNAL2V56, EXTERNAL)

Do not use anything less than OV or more than 5V for external reference voltage on the
AREF pin. If you are using an external reference on the AREF pin, you must set the analog
reference to EXTERNAL before calling the analogRead() function. Otherwise, you will
short the active reference voltage (internally generated) and the AREF pin, possibly
damaging the microcontroller on your Arduino board.

@' tutorialspoint 84

EIMPLYEAEYLEARMNINEG

Arduino

Analog reference pin

Alternatively, you can connect the external reference voltage to the AREF pin through a
5K resistor, allowing you to switch between external and internal reference voltages.

Note that the resistor will alter the voltage that is used as the reference because there is
an internal 32K resistor on the AREF pin. The two act as a voltage divider. For example,
2.5V applied through the resistor will yield 2.5 * 32 / (32 + 5) = ~2.2V at the AREF pin.

Example

int analogPin = 3;// potentiometer wiper (middle terminal) connected to analog
pin 3
int val = 0; // variable to store the read value

void setup()
{
Serial.begin(9600); // setup serial

analogReference(EXTERNAL); // the voltage applied to the AREF pin (0 to 5V
only)

is used as the reference.

}
void loop()

{
val = analogRead(analogPin); // read the input pin
Serial.println(val); // debug value

|§j’ tutorialspoint 85

EIMPLYEAEYLEARMNINEG

17. Arduino — Character Functions

All data is entered into computers as characters, which includes letters, digits and various
special symbols. In this section, we discuss the capabilities of C++ for examining and
manipulating individual characters.

The character-handling library includes several functions that perform useful tests and
manipulations of character data. Each function receives a character, represented as an int,
or EOF as an argument. Characters are often manipulated as integers.

Remember that EOF normally has the value -1 and that some hardware architectures do
not allow negative values to be stored in char variables. Therefore, the character-handling
functions manipulate characters as integers.

The following table summarizes the functions of the character-handling library. When using
functions from the character-handling library, include the <cctype> header.

int isdigit(int c) Returns 1 if c is a digit and 0 otherwise.
int isalpha(intc) Returns 1 if c is a letter and 0 otherwise.
int isalnum(int c) Returns 1 if c is a digit or a letter and 0 otherwise.

Returns 1 if ¢ is a hexadecimal digit character and 0 otherwise.

int isxdigit(int c) (See Appendix D, Number Systems, for a detailed explanation
of binary, octal, decimal and hexadecimal numbers.)

int islower(int c) Returns 1 if c is a lowercase letter and 0 otherwise.

int isupper(int c) Returns 1 if c is an uppercase letter; 0 otherwise.

Returns 1 if ¢ is a white-space character—newline ('\n'), space

int isspace(int ¢) (' "), form feed ('\f'), carriage return ('\r'), horizontal tab ('\t'),
or vertical tab ("\v')—and 0 otherwise.

Returns 1 if ¢ is a control character, such as newline ('\n'), form
int iscntri(int ¢) feed ("\f'), carriage return ("\r'), horizontal tab ('\t'), vertical tab
("\v"), alert ("\a'), or backspace ('\b')—and 0 otherwise.

Returns 1 if c is a printing character other than a space, a digit,

int ispunct(int c) or a letter and 0 otherwise.

Returns 1 if c is a printing character including space (' ') and 0

int isprint(int c) otherwise

@' tutorialspoint 86

EIMPLYEAEYLEARMNINEG

Arduino

Returns 1 if c is a printing character other than space (' ') and 0

int isgraph(int c) otherwise.

Examples

The following example demonstrates the use of the functions isdigit, isalpha, isalnum
and isxdigit. Function isdigit determines whether its argument is a digit (0-9). The
function isalpha determines whether its argument is an uppercase letter (A-Z) or a
lowercase letter (a-z). The function isalnum determines whether its argument is an
uppercase, lowercase letter or a digit. Function isxdigit determines whether its argument
is a hexadecimal digit (A-F, a-f, 0-9).

Example 1

void setup ()

{

Serial.begin (9600);

Serial.print ("According to isdigit:\r");

Serial.print (isdigit('8') ? "8 is a": "8 is not a");
Serial.print (" digit\r");

Serial.print (isdigit('8') ?"# is a": "# is not a") ;
Serial.print (" digit\r");

Serial.print ("\rAccording to isalpha:\r");
Serial.print (isalpha('A') ?"A is a": "A is not a");
Serial.print (" letter\r");
Serial.print (isalpha('A') ?"b is a": "b is not a");
Serial.print (" letter\r");
Serial.print (isalpha('A') ?"& is a": "& is not a");
Serial.print (" letter\r");
Serial.print (isalpha('A') ?"4 is a":"4 is not a");
Serial.print (" letter\r");
Serial.print ("\rAccording to isalnum:\r");

Serial.print (isalnum('A') ?"A is a" : "A is not a");

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 87

Arduino

Serial.print (" digit or a letter\r");
Serial.print (isalnum('8') ?"8 is a" :
Serial.print (" digit or a letter\r");
Serial.print (isalnum('#') ?"# is a"

Serial.print (" digit or a letter\r");

"8 is not a") ;

: "# is not a");

Serial.print ("\rAccording to isxdigit:\r");

Serial.print (isxdigit('F') ?"F is a" :
Serial.print (" hexadecimal digit\r");
Serial.print (isxdigit('3') ?"J is a" :

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('7') ?"7 is a" :

}

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('$') ? "$ is a" :

Serial.print (" hexadecimal digit\r");

Serial.print (isxdigit('f') ? “f is a" :

Serial.print (" hexadecimal digit\r");
}

void loop ()

{

}

"F is not a");

"J is not a") ;

"7 is not a") ;

"$ is not a");

"f is not a");

Result

According to isdigit:
8 is a digit

is not a digit
According to isalpha:
A is a letter

b is a letter

& is not a letter

4 is not a letter
According to isalnum:

A is a digit or a letter

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

88

Arduino

8 is a digit or a letter

is not a digit or a letter
According to isxdigit:

F is a hexadecimal digit

J is not a hexadecimal digit

7 is a hexadecimal digit

$ is not a hexadecimal digit

f is a hexadecimal digit

We use the conditional operator (?:) with each function to determine whether the string "
is a " or the string " is not a " should be printed in the output for each character tested.
For example, line a indicates that if '8' is a digit—i.e., if isdigit returns a true (nonzero)
value—the string "8 is a " is printed. If '8' is not a digit (i.e., if isdigit returns 0), the string
"8 is not a" is printed.

Example 2

The following example demonstrates the use of the functions islower and isupper. The
function islower determines whether its argument is a lowercase letter (a-z). Function
isupper determines whether its argument is an uppercase letter (A-2).

int thisChar = 0xAQ;

void setup ()

{

Serial.begin (9600);

Serial.print ("According to islower:\r") ;

Serial.print (islower('p') ? "p is a" : "p is not a");

Serial.print (lowercase letter\r");

Serial.print (islower('P') ? "P is a" : "P is not a") ;
Serial.print ("lowercase letter\r");

Serial.print (islower('5') ? "5 is a" : "5 is not a");

Serial.print (lowercase letter\r");
Serial.print (islower('!")? "l is a" : "! is not a") ;

Serial.print ("lowercase letter\r");

Serial.print ("\rAccording to isupper:\r") ;

Serial.print (isupper ('D') ? "D is a" : "D is not an");
Serial.print (" uppercase letter\r");
Serial.print (isupper ('d')? "d is a" : "d is not an") ;

'&j tutorialspoint 89

EIMPLYEAEYLEARMNINEG

Arduino

Serial.print (" uppercase letter\r");
Serial.print (isupper ('8"') ? "8 is a" : "8 is not an");
Serial.print (" uppercase letter\r");
Serial.print (islower('$')? "$ is a" : "$ is not an") ;

Serial.print ("uppercase letter\r ");

}

void setup ()

{
}

Result

According to islower:

p is a lowercase letter

P is not a lowercase letter

5 is not a lowercase letter

I is not a lowercase letter

According to isupper:

D is an uppercase letter

d is not an uppercase letter

8 is not an uppercase letter

$ is not an uppercase letter

Example 3

The following example demonstrates the use of functions isspace, iscntrl, ispunct,
isprint and isgraph.

The function isspace determines whether its argument is a white-space character,
such as space (''), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal
tab ("\t') or vertical tab ("\v').

The function iscntrl determines whether its argument is a control character such
as horizontal tab ('\t'), vertical tab ("\v'), form feed ('\f'), alert ('\a@"), backspace
("\b"), carriage return ('\r') or newline ('\n").

The function ispunct determines whether its argument is a printing character other
than a space, digit or letter, suchas $, #, (,), [, 1, {, }, ;, : or %.

The function isprint determines whether its argument is a character that can be
displayed on the screen (including the space character).

The function isgraph tests for the same characters as isprint, but the space
character is not included.

'&j \tutorialspoint 20

EIMPLYEAEYLEARMNINEG

Arduino

void setup ()

{

Serial.begin (9600);

Serial.print (
Serial.
Serial.
Serial.
Serial.

Serial.

Serial

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial.

Serial

Serial.

Serial.

Serial.
Serial.
Serial.

Serial.

Serial

Serial

Serial.

Serial.
Serial.
Serial.

Serial.

print
print
print
print

print

.print

print
print
print
print
print
print
print
print

.print

print

print

print
print
print

print

.print

.print

print

print
print
print

print

According to isspace:\rNewline ") ;

(isspace('\n")? " is a" : " is not a");

(" whitespace character\rHorizontal tab") ;

(isspace('\t')? " is a" is not a");
(" whitespace character\n") ;

(isspace('%')? " % is a" : " % is not a");

(" \rAccording to iscntrl:\rNewline") ;

(iscntrl('\n')?"is a" : " is not a") ;
(" control character\r");

(iscntrl('$") 2 " $ is a" : " $ is not a");
(" control character\r");

("\rAccording to ispunct:\r");

(ispunct(';") ?"; is a" : "; is not a") ;
(" punctuation character\r");

(ispunct('Y"') ?"Y is a" : "Y is not a") ;
("punctuation character\r");

(ispunct('#"') ?"# is a" : "# is not a") ;

("punctuation character\r");

("\r According to isprint:\r");
(isprint('$") ?"¢$ is a" : "$ is not a");
(" printing character\rAlert ");

(isprint('\a') ?" is a is not a");

(" printing character\rSpace ");

(isprint(' ') ?" is a" is not a");

(" printing character\r");

("\r According to isgraph:\r");
(isgraph ('Q") ?"Q is a" : "Q is not a");

("printing character other than a space\rSpace

(isgraph (' ') ?" is a" is not a");

")

&

tutorialspoint

SEIMPLY

EAEYLEARNING

91

Arduino

Serial.print ("printing character other than a space ");

}
void loop ()

{
}

Result

According to isspace:

Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character
According to iscntrl:

Newline is a control character

$ is not a control character

According to ispunct:

; is a punctuation character

Y is not a punctuation character

is a punctuation character

According to isprint:

$ is a printing character

Alert is not a printing character

Space is a printing character

According to isgraph:

Q is a printing character other than a space

Space is not a printing character other than a space

'@. \tutorialspoint

EIMPLYEAEYLEARMNINEG

92

18. Arduino — Math Library

The Arduino Math library (math.h) includes a number of useful mathematical functions for
manipulating floating-point numbers.

Library Macros

Following are the macros defined in the header math.h:

M_E 2.7182818284590452354 The constant e.
1.4426950408889634074 The logarithm of the e to base
M_LOG2E 5
/*log_2 e */
0.31830988618379067154
M_1_PI The constant 1/pi
/* 1/pi */
0.63661977236758134308
M_2_PI The constant 2/pi
/* 2/pi */
1.12837916709551257390
M_2_SQRTPI _ The constant 2/sqrt(pi)
/* 2/sqrt(pi) */
2.30258509299404568402
M_LN10 The natural logarithm of the 10
/* log_e 10 */
0.69314718055994530942
M_LN2 The natural logarithm of the 2
/*log_e 2 */
0.43429448190325182765 The logarithm of the e to base
M_LOG10E
/* log_10 e */ 10
3.14159265358979323846
M_PI The constant pi
/* pi */
3.3V1.57079632679489661923
M_PI 2 The constant pi/2
/* pi/2 */
0.78539816339744830962
M_PI 4 The constant pi/4
/* pi/4 */
M_SQRT1_2 | 0.70710678118654752440 The constant 1/sqrt(2)

' tutorialspoint

EIMPLYEAEYLEARMNINEG

93

Arduino

/* 1/sqrt(2) */

1.41421356237309504880

M_SQRT2 The square root of 2

/* sart(2) */
acosf - The alias for acos() function
asinf - The alias for asin() function
atan2f - The alias for atan2() function
cbrtf - The alias for cbrt() function
ceilf - The alias for ceil() function
copysignf - The alias for copysign()

function

coshf - The alias for cosh() function
expf - The alias for exp() function
fabsf - The alias for fabs() function
fdimf - The alias for fdim() function
floorf - The alias for floor() function
fmaxf - The alias for fmax() function
fminf - The alias for fmin() function
fmodf - The alias for fmod() function
frexpf - The alias for frexp() function
hypotf - The alias for hypot() function
INFINITY - INFINITY constant
isfinitef - The alias for isfinite() function
isinff - The alias for isinf() function
isnanf - The alias for isnan() function
Idexpf - The alias for Idexp() function

MPLY

EAEYLEARNING

'&j ' tutorialspoint

94

Arduino

log10f - The alias for log10() function

logf - The alias for log() function

Irintf - The alias for Irint() function

Iroundf - The alias for Iround() function
Library Functions

The following functions are defined in the header math.h:

Library Function

Description

double acos (double __ x)

The acos() function computes the principal
value of the arc cosine of __x. The returned
value is in the range [0, pi] radians. A
domain error occurs for arguments not in
the range [-1, +1].

double asin (double __ x)

The asin() function computes the principal
value of the arc sine of __x. The returned
value is in the range [-pi/2, pi/2] radians.
A domain error occurs for arguments not in
the range [-1, +1].

double atan (double __ x)

The atan() function computes the principal
value of the arc tangent of _ x. The
returned value is in the range [-pi/2, pi/2]
radians.

double atan2 (double __y, double _ x)

The atan2() function computes the
principal value of the arc tangent of __y /
__X, using the signs of both arguments to
determine the quadrant of the return
value. The returned value is in the range [-
pi, +pi] radians.

double cbrt (double __ x)

The cbrt() function returns the cube root of
X.

double ceil (double __ x)

The ceil() function returns the smallest
integral value greater than or equal to __ X,
expressed as a floating-point number.

static double copysign (double __x, double
—Y)

The copysign() function returns __ x but
with the sign of __y. They work even if __ x
or __y are NaN or zero.

double cos(double __ x)

The cos() function returns the cosine of
__X, measured in radians.

YEAEYLEARMNMINEG

'&j ' tutorialspoint

95

Arduino

double cosh (double __ x)

The cosh() function returns the hyperbolic
cosine of __ x.

double exp (double __ x)

The exp() function returns the exponential
value of __x.

double fabs (double __ x)

The fabs() function computes the absolute
value of a floating-point number __ x.

double fdim (double __x, double __y)

The fdim() function returns max(__x-__y,
0). If _ x or __y or both are NaN, NaN is
returned.

double floor (double __ x)

The floor() function returns the largest
integral value less than or equal to _ x,
expressed as a floating-point number.

double fma
double __2)

(double __x, double __y,

The fma() function performs floating-point
multiply-add. This is the operation (__x *
_Y) + __z, but the intermediate result is
not rounded to the destination type. This
can sometimes improve the precision of a
calculation.

double fmax (double __x, double __y)

The fmax() function returns the greater of
the two values _ x and __y. If an
argument is NaN, the other argument is
returned. If both the arguments are NaN,
NaN is returned.

double fmin (double __ x, double __y)

The fmin() function returns the lesser of
the two values _ x and __y. If an
argument is NaN, the other argument is
returned. If both the arguments are NaN,
NaN is returned.

double fmod (double __ x, double__y)

The function fmod() returns the floating-
point remainder of _ x/ _ .

double frexp (double __x, int * ___pexp)

The frexp() function breaks a floating-point
number into a normalized fraction and an
integral power of 2. It stores the integer in
the int object pointed to by __ pexp. If __ X
is a normal float point humber, the frexp()
function returns the value v, such that v
has a magnitude in the interval [1/2, 1) or
zero, and __x equals v times 2 raised to
the power _ pexp. If __ x is zero, both
parts of the result are zero. If _ x is not a
finite number, the frexp() returns __x as is
and stores 0 by ___pexp.

Note: This implementation permits a zero
pointer as a directive to skip a storing the
exponent.

YEAEYLEARMNMINEG

'&j ' tutorialspoint

96

Arduino

double hypot (double __x, double__y)

The hypot() function returns sqrt(__x*__ x
+ __y*_ y). This is the length of the
hypotenuse of a right triangle with sides of
length _ x and __y, or the distance of the
point (__x, __y) from the origin. Using this
function instead of the direct formula is
wise, since the error is much smaller. No
underflow with small _ x and __y. No
overflow if result is in range.

static int isfinite (double __ x)

The isfinite() function returns a nonzero
value if __ x is finite: not plus or minus
infinity, and not NaN.

int isinf (double __x)

The function isinf() returns 1 if the
argument __ x is positive infinity, -1 if __x
is negative infinity, and 0 otherwise.

Note: The GCC 4.3 can replace this
function with inline code that returns the 1
value for both infinities (gcc bug #35509).

int isnan (double __ x)

The function isnan() returns 1 if the
argument _ X represents a "not-a-
number" (NaN) object, otherwise 0.

double Idexp (double __ x, int __exp)

The Idexp() function multiplies a floating-
point number by an integral power of 2. It
returns the value of __ x times 2 raised to
the power __exp.

double log (double __x)

The log() function returns the natural
logarithm of argument __ x.

double log10(double _ x)

The log10() function returns the logarithm
of argument __ x to base 10.

long Irint (double __x)

The Irint() function rounds _ x to the
nearest integer, rounding the halfway
cases to the even integer direction. (That
is both 1.5 and 2.5 values are rounded to
2). This function is similar to rint()
function, but it differs in type of return
value and in that an overflow is possible.

Returns

The rounded long integer value. If _ X is
not a finite number or an overflow, this
realization returns the LONG_MIN value
(0x80000000).

long Iround (double __ x)

The Iround() function rounds _ x to the
nearest integer, but rounds halfway cases
away from zero (instead of to the nearest
even integer). This function is similar to

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

97

Arduino

round() function, but it differs in type of
return value and in that an overflow is
possible.

Returns

The rounded long integer value. If _ x is
not a finite number or an overflow was, this
realization returns the LONG_MIN value
(0x80000000).

double modf (double _ X, double
__iptr)

*

The modf() function breaks the argument
__x into integral and fractional parts, each
of which has the same sign as the
argument. It stores the integral part as a
double in the object pointed to by __iptr.

The modf() function returns the signed
fractional part of __ x.

Note: This implementation skips writing by
zero pointer. However, the GCC 4.3 can
replace this function with inline code that
does not permit to use NULL address for
the avoiding of storing.

float modff (float __ x, float * __iptr)

The alias for modf().

double pow (double _ x, double __y)

The function pow() returns the value of __x
to the exponent __y.

double round (double __ x)

The round() function rounds _ x to the
nearest integer, but rounds halfway cases
away from zero (instead of to the nearest
even integer). Overflow is impossible.

Returns

The rounded value. If _ x is an integral or
infinite, _ x itself is returned. If _ x is
NaN, then NaN is returned.

int signbit (double __ x)

The signbit() function returns a nonzero
value if the value of __x has its sign bit set.
This is not the same as '__x < 0.0,
because IEEE 754 floating point allows zero
to be signed. The comparison "-0.0 < 0.0'
is false, but “signbit (-0.0)" will return a
nonzero value.

double sin (double _ x)

The sin() function returns the sine of __ x,
measured in radians.

double sinh (double __ x)

The sinh() function returns the hyperbolic
sine of __X.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

98

Arduino

double sqgrt (double __ x)

The sqgrt() function returns the non-
negative square root of __ x.

double square (double __ x)

The function square() returns __x * __ x.

Note: This function does not belong to the
C standard definition.

double tan (double __ x)

The tan() function returns the tangent of
__X, measured in radians.

double tanh (double _ x)

The tanh() function returns the hyperbolic
tangent of __ x.

double trunc (double _ x)

The trunc() function rounds __ x to the
nearest integer not larger in absolute
value.

Example
The following example shows how to use the most common math.h library functions:

double double_ x = 45.45 ;

double double__y = 30.20 ;

void setup()

{
Serial.begin(9600);
Serial.print("cos num = ");
Serial.println (cos (double__x)); // returns cosine of x
Serial.print("absolute value of num = ");
Serial.println (fabs (double_ x)); // absolute value of a float
Serial.print("floating point modulo =");
Serial.println (fmod (double_x, double vy)); // floating point modulo
Serial.print("sine of num = ");
Serial.println (sin (double__x)) ;// returns sine of x
Serial.print("square root of num : ");
Serial.println (sqrt (double_ x));// returns square root of x
Serial.print("tangent of num : ");
Serial.println (tan (double_ x)); // returns tangent of x
Serial.print("exponential value of num : ");
Serial.println (exp (double_ x)); // function returns the exponential value

of X.
Serial.print("cos num : ");

§pDtutorisispoint >

Arduino

Serial.println (atan (double_ x)); // arc tangent of x
Serial.print("tangent of num : ");
Serial.println (atan2 (double__y, double_x));// arc tangent of y/x
Serial.print("arc tangent of num : ");
Serial.println (log (double__x)) ; // natural logarithm of x
Serial.print("cos num : ");
Serial.println (logl® (double_ x)); // logarithm of x to base 160.
Serial.print("logarithm of num to base 10 : ");
Serial.println (pow (double__ x, double y));// x to power of y
Serial.print("power of num : ");
Serial.println (square (double_ x)); // square of x

}

void loop()

{

}

Result

€Oos num = 0.10

absolute value of num = 45.45
floating point modulo =15.25
sine of num = 0.99

square root of num : 6.74
tangent of num : 9.67
exponential value of num : ovf
cos num : 1.55

tangent of num : 0.59

arc tangent of num : 3.82

cos num : 1.66

logarithm of num to base 10 : inf

power of num : 2065.70

'&j \tutorialspoint 100

EIMPLYEAEYLEARMNINEG

19. Arduino — Trigonometric Functions

You need to use Trigonometry practically like calculating the distance for moving object or
angular speed. Arduino provides traditional trigonometric functions (sin, cos, tan, asin,
acos, atan) that can be summarized by writing their prototypes. Math.h contains the
trigonometry function's prototype.

Trigonometric Exact Syntax

double sin(double x); //returns sine of x radians
double cos(double y); //returns cosine of y radians

double tan(double x); //returns the tangent of x radians

double acos(double x); //returns A, the angle corresponding to cos (A) = x
double asin(double x); //returns A, the angle corresponding to sin (A) = x
double atan(double x); //returns A, the angle corresponding to tan (A) = x

Example
double sine = sin(2); // approximately ©.90929737091
double cosine = cos(2); // approximately -0.41614685058
double tangent = tan(2); // approximately -2.18503975868

@' tutorialspoint 101

EIMPLYEAEYLEARMNINEG

Arduino

Arduino — Advanced

@tutor‘ialspoint 102

20. Arduino —Due & Zero

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3
CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller.

Important features -
e It has 54 digital input/output pins (of which 12 can be used as PWM outputs)
e 12 analog inputs
e 4 UARTs (hardware serial ports)
e 84 MHz clock, an USB OTG capable connection
e 2 DAC (digital to analog), 2 TWI, a power jack, an SPI header, a JTAG header

e Reset button and an erase button

\ NV TMNMD
ST R . - o
LR L) "-" e ﬂa

ot G
- '

- P et e S
e bt ee bt b b et H g

v
A4

EIMPLYEAEYLEARMNINEG

@' ' tutorialspoint 103

http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf

Arduino

Characteristics of the Arduino Due Board

Digital
Operating CPU Analog y EEPROM | SRAM | Flash v | s
volt speed | in/out | IO
PWM [KB] [KB] | [KB]
3.3 Volt 84 Mhz 12/2 54/12 - 96 512 mizcro 4
Communication
e 4 Hardware UARTs
e 21I2C
e 1 CAN Interface (Automotive communication protocol)
e 1SPI

e 1 Interface JTAG (10 pin)
e 1 USB Host (like as Leonardo)

e 1 Programming Port

Unlike most Arduino boards, the Arduino Due board runs at 3.3V. The maximum voltage
that the I/O pins can tolerate is 3.3V. Applying voltages higher than 3.3V to any I/O pin
could damage the board.

The board contains everything needed to support the microcontroller. You can simply
connect it to a computer with a micro-USB cable or power it with an AC-to-DC adapter or
battery to get started. The Due is compatible with all Arduino shields that work at 3.3V.

Arduino Zero

The Zero is a simple and powerful 32-bit extension of the platform established by the UNO.
The Zero board expands the family by providing increased performance, enabling a variety
of project opportunities for devices, and acts as a great educational tool for learning about
32-bit application development.

Important features are -

e The Zero applications span from smart IoT devices, wearable technology, high-tech
automation, to crazy robotics.

e The board is powered by Atmel’s SAMD21 MCU, which features a 32-bit ARM
Cortex® MO+ core.

e One of its most important features is Atmel’'s Embedded Debugger (EDBG), which
provides a full debug interface without the need for additional hardware,
significantly increasing the ease-of-use for software debugging.

e EDBG also supports a virtual COM port that can be used for device and bootloader
programming.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 104

Arduino

Characteristics of the Arduino Zero board

3.3 Volt 48 Mhz 6/1 14/10 - 32 256 2

Unlike most Arduino and Genuino boards, the Zero runs at 3.3V. The maximum voltage
that the I/0 pins can tolerate is 3.3V. Applying voltages higher than 3.3V to any I/O pin
could damage the board.

The board contains everything needed to support the microcontroller. You can simply
connect it to a computer with a micro-USB cable or power it with an AC-to-DC adapter or
a battery to get started. The Zero is compatible with all the shields that work at 3.3V.

' tutorialspoint 105

EIMPLYEAEYLEARMNINEG

21. Arduino — Pulse Width Modulation

Pulse Width Modulation or PWM is a common technique used to vary the width of the
pulses in a pulse-train. PWM has many applications such as controlling servos and speed
controllers, limiting the effective power of motors and LEDs.

Basic Principle of PWM

Pulse width modulation is basically, a square wave with a varying high and low time. A
basic PWM signal is shown in the following figure.

5V

A
L)

Amplitude
-l
ﬂ

oy =

L)

There are various terms associated with PWM:

e On-Time: Duration of time signal is high.
e Off-Time: Duration of time signal is low.
e Period: It is represented as the sum of on-time and off-time of PWM signal.

e Duty Cycle: It is represented as the percentage of time signal that remains on
during the period of the PWM signal.

Period

As shown in the figure, Ton denotes the on-time and Tof denotes the off-time of signal.

Period is the sum of both on and off times and is calculated as shown in the following
equation:

Ttomi = Ton + To_r’_r’

@' tutorialspoint 106

EIMPLYEAEYLEARMNINEG

Arduino

Duty Cycle

Duty cycle is calculated as the on-time of the period of time. Using the period calculated
above, duty cycle is calculated as -

TIS‘ L - TG?‘!

D= =
{Ton+ Toff} Tmm:

analogWrite() Function

The analogWrite() function writes an analog value (PWM wave) to a pin. It can be used
to light a LED at varying brightness or drive a motor at various speeds. After a call of
the analogWrite() function, the pin will generate a steady square wave of the specified
duty cycle until the next call to analogWrite() or a call to digitalRead() or digitalWrite() on
the same pin). The frequency of the PWM signal on most pins is approximately 490 Hz.
On the Uno and similar boards, pins 5 and 6 have a frequency of approximately 980 Hz.
Pins 3 and 11 on the Leonardo also run at 980 Hz.

On most Arduino boards (those with the ATmegal68 or ATmega328), this function works
on pins 3, 5, 6, 9, 10, and 11. On the Arduino Mega, it works on pins 2 - 13 and 44 - 46.
Older Arduino boards with an ATmega8 only support analogWrite() on pins 9, 10, and
11.

B MWW ARDUXNG . CC — MADE XM X¥au

UNO PWM pins

The Arduino Due supports analogWrite() on pins 2 through 13, and
pins DACO and DAC1. Unlike the PWM pins, DACO and DAC1 are Digital to Analog
converters, and act as true analog outputs.

You do not need to call pinMode() to set the pin as an output before calling analogWrite().

analogWrite() Function Syntax

analogWrite (pin , value) ;

value: the duty cycle: between 0 (always off) and 255 (always on).

EIMPLYEAEYLEARMNINEG

'@J Mtutorialspoint 107

https://www.arduino.cc/en/Tutorial/PWM

Arduino

Example
int ledPin = 9; // LED connected to digital pin 9
int analogPin = 3; // potentiometer connected to analog pin 3
int val = 0; // variable to store the read value

void setup()

{
pinMode(ledPin, OUTPUT); // sets the pin as output

}
void loop()

{
val = analogRead(analogPin); // read the input pin

analogWrite(ledPin, (val / 4)); // analogRead values go from © to 1023,

analogWrite values from @ to 255

}

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

108

22. Arduino — Random Numbers

To generate random numbers, you can use Arduino random number functions. We have
two functions -

¢ randomSeed(seed)

e random()

randomSeed (seed)

The function randomSeed(seed) resets Arduino’s pseudorandom number generator.
Although the distribution of the numbers returned by random() is essentially random, the
sequence is predictable. You should reset the generator to some random value. If you
have an unconnected analog pin, it might pick up random noise from the surrounding
environment. These may be radio waves, cosmic rays, electromagnetic interference from
cell phones, fluorescent lights and so on.

Example

randomSeed(analogRead(5)); // randomize using noise from analog pin 5

random()

The random function generates pseudo-random numbers. Following is the syntax.

random() Statements Syntax

long random(max) // it generate random numbers from © to max

long random(min, max) // it generate random numbers from min to max

Example

long randNumber;

void setup()

{
Serial.begin(9600);
// if analog input pin @ is unconnected, random analog
// noise will cause the call to randomSeed() to generate

// different seed numbers each time the sketch runs.

// randomSeed() will then shuffle the random function.

@' tutorialspoint 109

EIMPLYEAEYLEARMNINEG

Arduino

randomSeed(analogRead(Q));
}
void loop() {
// print a random number from @ to 299
Serial.print("randoml=");
randNumber = random(300);
Serial.println(randNumber); // print a random number from Oto 299
Serial.print("random2=");
randNumber = random(10, 20);// print a random number from 10 to 19
Serial.println (randNumber);

delay(590);

Let us now refresh our knowledge on some of the basic concepts such as bits and bytes.

Bits

A bit is just a binary digit.

e The binary system uses two digits, 0 and 1.

e Similar to the decimal number system, in which digits of a number do not have the
same value, the ‘significance’ of a bit depends on its position in the binary number.
For example, digits in the decimal number 666 are the same, but have different
values.

Byte| Bit 7| Bit 6| Bit 5| Bit 4| Bit 3| Bit 2| Bit 1| Bit 0| l

?

MSB = Most Significant Bit

LSB = Least Significant Bit

Bytes

A byte consists of eight bits.

o If a bitis a digit, it is logical that bytes represent numbers.
¢ All mathematical operations can be performed upon them.

e The digits in a byte do not have the same significance either.

EIMPLYEAEBEYLEARNING

@' tutorialspoint 110

Arduino

e The leftmost bit has the greatest value called the Most Significant Bit (MSB).

e The rightmost bit has the least value and is therefore, called the Least Significant
Bit (LSB).

e Since eight zeros and ones of one byte can be combined in 256 different ways, the
largest decimal number that can be represented by one byte is 255 (one
combination represents a zero).

w' tutorialspoint 111

EIMPLYEAEYLEARMNINEG

23. Arduino — Interrupts

Interrupts stop the current work of Arduino such that some other work can be done.

Suppose you are sitting at home, chatting with someone. Suddenly the telephone rings.
You stop chatting, and pick up the telephone to speak to the caller. When you have finished
your telephonic conversation, you go back to chatting with the person before the telephone
rang.

Similarly, you can think of the main routine as chatting to someone, the telephone ringing
causes you to stop chatting. The interrupt service routine is the process of talking on the
telephone. When the telephone conversation ends, you then go back to your main routine
of chatting. This example explains exactly how an interrupt causes a processor to act.

The main program is running and performing some function in a circuit. However, when
an interrupt occurs the main program halts while another routine is carried out. When this
routine finishes, the processor goes back to the main routine again.

Interrupt , } 4 l ISR

Important features

Here are some important features about interrupts:

e Interrupts can come from various sources. In this case, we are using a hardware
interrupt that is triggered by a state change on one of the digital pins.

e Most Arduino designs have two hardware interrupts (referred to as "interrupt0" and
"interruptl") hard-wired to digital I/O pins 2 and 3, respectively.

e The Arduino Mega has six hardware interrupts including the additional interrupts
("interrupt2" through "interrupt5") on pins 21, 20, 19, and 18.

@' tutorialspoint 112

EIMPLYEAEYLEARMNINEG

Arduino

e You can define a routine using a special function called as “Interrupt Service
Routine” (usually known as ISR).

e You can define the routine and specify conditions at the rising edge, falling edge or
both. At these specific conditions, the interrupt would be serviced.

e It is possible to have that function executed automatically, each time an event
happens on an input pin.

Types of Interrupts

There are two types of interrupts -

¢ Hardware Interrupts - They occur in response to an external event, such as an
external interrupt pin going high or low.

e Software Interrupts - They occur in response to an instruction sent in software.
The only type of interrupt that the “Arduino language” supports is the
attachInterrupt() function.

Using Interrupts in Arduino

Interrupts are very useful in Arduino programs as it helps in solving timing problems. A
good application of an interrupt is reading a rotary encoder or observing a user input.
Generally, an ISR should be as short and fast as possible. If your sketch uses
multiple ISRs, only one can run at a time. Other interrupts will be executed after the
current one finishes in an order that depends on the priority they have.

Typically, global variables are used to pass data between an ISR and the main program.
To make sure variables shared between an ISR and the main program are updated
correctly, declare them as volatile.

attachinterrupt Statement Syntax

attachInterrupt(digitalPinToInterrupt(pin),ISR,mode);//recommended for arduino
board

attachInterrupt(pin, ISR, mode) ; //recommended Arduino Due, Zero only
//argument pin: the pin number

//argument ISR: the ISR to call when the interrupt occurs; this function must
take no parameters and return nothing. This function is sometimes referred to as
an interrupt service routine.

//argument mode: defines when the interrupt should be triggered.

The following three constants are predefined as valid values -
e LOW to trigger the interrupt whenever the pin is low.
¢ CHANGE to trigger the interrupt whenever the pin changes value.
e FALLING whenever the pin goes from high to low.

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 113

Arduino

Example
int pin = 2; //define interrupt pin to 2
volatile int state = LOW; // To make sure variables shared between an ISR

//the main program are updated correctly,declare them as volatile.
void setup() {

pinMode (13, OUTPUT); //set pin 13 as output
attachInterrupt(digitalPinToInterrupt(pin), blink, CHANGE);
//interrupt at pin 2 blink ISR when pin to change the value

}

void loop() {
digitalWrite(13, state); //pin 13 equal the state value

}

void blink() { //ISR function
state = !state; //toggle the state when the interrupt occurs

}

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

114

24. Arduino — Communication

Hundreds of communication protocols have been defined to achieve this data exchange.
Each protocol can be categorized into one of the two categories: parallel or serial.

Parallel Communication

Parallel connection between the Arduino and peripherals via input/output ports is the ideal
solution for shorter distances up to several meters. However, in other cases when it is
necessary to establish communication between two devices for longer distances it is not
possible to use parallel connection. Parallel interfaces transfer multiple bits at the same
time. They usually require buses of data - transmitting across eight, sixteen, or more
wires. Data is transferred in huge, crashing waves of 1’s and 0’s.

Cmsbusmsmuogmm)

~ o\
7% 7—X

f e X

S |

' 9

Sender - Receiver

$ -0

£ &

Slr Y
My . A4

CWeneedclght Ilm.)

Advantages and Drawbacks of Parallel Communication

Parallel communication certainly has its advantages. It is faster than serial,
straightforward, and relatively easy to implement. However, it requires many input/output
(I/O) ports and lines. If you have ever had to move a project from a basic Arduino Uno to
a Mega, you know that the I/O lines on a microprocessor can be precious and few.
Therefore, we prefer serial communication, sacrificing potential speed for pin real estate.

Serial Communication Modules

Today, most Arduino boards are built with several different systems for serial
communication as standard equipment.

Which of these systems are used depends on the following factors -

¢ How many devices the microcontroller has to exchange data with?
¢ How fast the data exchange has to be?

¢ What is the distance between these devices?

@' tutorialspoint 115

EIMPLYEAEYLEARMNINEG

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11061

Arduino

e Is it necessary to send and receive data simultaneously?

One of the most important things concerning serial communication is the Protocol, which
should be strictly observed. It is a set of rules, which must be applied such that the devices
can correctly interpret data they mutually exchange. Fortunately, Arduino automatically
takes care of this, so that the work of the programmer/user is reduced to simple write
(data to be sent) and read (received data).

Types of Serial Communications

Serial communication can be further classified as -

¢ Synchronous - Devices that are synchronized use the same clock and their timing
is in synchronization with each other.

e Asynchronous - Devices that are asynchronous have their own clocks and are
triggered by the output of the previous state.

It is easy to find out if a device is synchronous or not. If the same clock is given to all the
connected devices, then they are synchronous. If there is no clock line, it is asynchronous.

For example, UART (Universal Asynchronous Receiver Transmitter) module is
asynchronous.

The asynchronous serial protocol has a number of built-in rules. These rules are nothing
but mechanisms that help ensure robust and error-free data transfers. These mechanisms,
which we get for eschewing the external clock signal, are:

e Synchronization bits
e Data bits
e Parity bits

e Baud rate

Synchronization Bits

The synchronization bits are two or three special bits transferred with each packet of data.
They are the start bit and the stop bit(s). True to their name, these bits mark the
beginning and the end of a packet respectively.

There is always only one start bit, but the number of stop bits is configurable to either one
or two (though it is normally left at one).

The start bit is always indicated by an idle data line going from 1 to 0, while the stop bit(s)
will transition back to the idle state by holding the line at 1.

_____ -.-*
—_ @
:,.:._ :5:}7?
o000 e S~
)
S’

116

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

Arduino

Data Bits

The amount of data in each packet can be set to any size from 5 to 9 bits. Certainly, the
standard data size is your basic 8-bit byte, but other sizes have their uses. A 7-bit data
packet can be more efficient than 8, especially if you are just transferring 7-bit ASCII
characters.

Parity Bits

The user can select whether there should be a parity bit or not, and if yes, whether the
parity should be odd or even. The parity bit is 0 if the number of 1’s among the data bits
is even. Odd parity is just the opposite.

Baud Rate

The term baud rate is used to denote the number of bits transferred per second [bps].
Note that it refers to bits, not bytes. It is usually required by the protocol that each byte
is transferred along with several control bits. It means that one byte in serial data stream
may consist of 11 bits. For example, if the baud rate is 300 bps then maximum 37 and
minimum 27 bytes may be transferred per second.

Arduino UART

The following code will make Arduino send hello world when it starts up.

void setup()

{

Serial.begin(9600); //set up serial library baud rate to 9600
Serial.println("hello world"); //print hello world

}

void loop()

{

}

After the Arduino sketch has been uploaded to Arduino, open the Serial monitor at the
top right section of Arduino IDE.

Type anything into the top box of the Serial Monitor and press send or enter on your
keyboard. This will send a series of bytes to the Arduino.

The following code returns whatever it receives as an input.

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 117

Arduino

The following code will make Arduino deliver output depending on the input provided.

void setup()

{
Serial.begin(9600); //set up serial library baud rate to 9600

}
void loop()

{

if(Serial.available()) //if number of bytes (characters) available for reading
from

{ serial port
Serial.print("I received:"); //print I received
Serial.write(Serial.read()); //send what you read
}
}

Notice that Serial.print and Serial.println will send back the actual ASCII code, whereas
Serial.write will send back the actual text. See ASCII codes for more information.

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 118

http://www.asciitable.com/

25. Arduino — Inter Integrated Circuit

Inter-integrated circuit (I2C) is a system for serial data exchange between the
microcontrollers and specialized integrated circuits of a new generation. It is used when
the distance between them is short (receiver and transmitter are usually on the same
printed board). Connection is established via two conductors. One is used for data transfer
and the other is used for synchronization (clock signal).

As seen in the following figure, one device is always a master. It performs addressing of
one slave chip before the communication starts. In this way, one microcontroller can
communicate with 112 different devices. Baud rate is usually 100 Kb/sec (standard mode)
or 10 Kb/sec (slow baud rate mode). Systems with the baud rate of 3.4 Mb/sec have
recently appeared. The distance between devices, which communicate over an I2C bus is
limited to several meters.

"SLAVE
~ MASTER (Senson)
Microcontrolier
)|
Board I2C Pins

The I2C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the
data signal. The current bus master always generates the clock signal. Some slave devices
may force the clock low at times to delay the master sending more data (or to require
more time to prepare data before the master attempts to clock it out). This is known as
“clock stretching”.

Following are the pins for different Arduino boards -

e Uno, Pro Mini A4 (SDA), A5 (SCL)
e Mega, Due 20 (SDA), 21 (SCL)
e Leonardo, Yun 2 (SDA), 3 (SCL)

Arduino I2C

We have two modes - master code and slave code - to connect two Arduino boards using
I2C. They are:

e Master Transmitter / Slave Receiver

e Master Receiver / Slave Transmitter

EIMPLYEAEYLEARMNINEG

'@‘. tutorialspoint 119

Arduino

Master Transmitter / Slave Receiver

Let us now see what is master transmitter and slave receiver.

Master Transmitter

The following functions are used to initialize the Wire library and join the I2C bus as a
master or slave. This is normally called only once.

Wire.begin(address) - Address is the 7-bit slave address in our case as the
master is not specified and it will join the bus as a master.

Wire.beginTransmission(address) - Begin a transmission to the I2C slave
device with the given address.

Wire.write(value) - Queues bytes for transmission from a master to slave device
(in-between calls to beginTransmission() and endTransmission()).

Wire.endTransmission() - Ends a transmission to a slave device that was begun
by beginTransmission() and transmits the bytes that were queued by wire.write().

Example
#include <Wire.h> //include wire library
void setup() //this will run only once
{
Wire.begin(); // join i2c bus as master
}

short age = 0;
void loop()

{

Wire.beginTransmission(2); // transmit to device #2

Wire.write("age is=");

Wire.write(age); // sends one byte
Wire.endTransmission(); // stop transmitting
delay(1000);

}

Slave Receiver

The following functions are used -

Wire.begin(address) - Address is the 7-bit slave address.

Wire.onReceive(received data handler) - Function to be called when a slave
device receives data from the master.

Wire.available() - Returns the number of bytes available for retrieval
with Wire.read().This should be called inside the Wire.onReceive() handler.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 120

Arduino

Example
#include <Wire.h> //include wire library
void setup() //this will run only once
{
Wire.begin(2); // join i2c bus with address #2
Wire.onReceive(receivekEvent); // call receiveEvent when the master send any
thing
Serial.begin(9600); // start serial for output to print what we
receive
}
void loop()
{
delay(250);
}
//----- this function will execute whenever data is received from master----- //

void receiveEvent(int howMany)

{ while (Wire.available()>1) // loop through all but the last
{
char ¢ = Wire.read(); // receive byte as a character
Serial.print(c); // print the character
}
}

Master Receiver/ Slave Transmitter

Let us now see what is master receiver and slave transmitter.

Master Receiver

The Master, is programmed to request, and then read bytes of data that are sent from the
uniquely addressed Slave Arduino.

The following function is used:

Wire.requestFrom(address,number of bytes) - Used by the master to request bytes
from a slave device. The bytes may then be retrieved with the functions
wire.available() and wire.read() functions.

'&j \tutorialspoint 121

EIMPLYEAEYLEARMNINEG

Arduino

Example

#include <Wire.h> //include wire library void setup()

{
Wire.begin(); // join i2c bus (address optional for master)
Serial.begin(9600); // start serial for output

}

void loop()

{
Wire.requestFrom(2, 1); // request 1 bytes from slave device #2

while (Wire.available()) // slave may send less than requested
{
char ¢ = Wire.read(); // receive a byte as character

Serial.print(c); // print the character

}
delay(500);

Slave Transmitter

The following function is used.

Wire.onRequest(handler) - A function is called when a master requests data from this
slave device.

Example

#include <Wire.h>
void setup()

{
Wire.begin(2); // join i2c bus with address #2
Wire.onRequest(requestEvent); // register event

}

Byte x=0;

void loop() {
delay(100);

}

// function that executes whenever data is requested by master
// this function is registered as an event, see setup()

void requestEvent()

{

Wire.write(x); // respond with message of 1 bytes as expected by master

X++;

}

'&j \tutorialspoint 122

EIMPLYEAEYLEARMNINEG

26. Arduino — Serial Peripheral Interface

A Serial Peripheral Interface (SPI) bus is a system for serial communication, which uses
up to four conductors, commonly three. One conductor is used for data receiving, one for
data sending, one for synchronization and one alternatively for selecting a device to
communicate with. It is a full duplex connection, which means that the data is sent and
received simultaneously. The maximum baud rate is higher than that in the I2C
communication system.

Board SPI Pins

SPI uses the following four wires:

e SCK: This is the serial clock driven by the master.
e MOSI: This is the master output / slave input driven by the master.
e MISO: This is the master input / slave output driven by the master.

e SS: This is the slave-selection wire.

The following functions are used. You have to include the SPI.h.

e SPI.begin() - Initializes the SPI bus by setting SCK, MOSI, and SS to outputs,
pulling SCK and MOSI low, and SS high.

¢ SPIl.setClockDivider(divider) - To set the SPI clock divider relative to the
system clock. On AVR based boards, the dividers available are 2, 4, 8, 16, 32, 64
or 128. The default setting is SPI_CLOCK_DIV4, which sets the SPI clock to one-
quarter of the frequency of the system clock (5 Mhz for the boards at 20 MHz).

¢ Divider: It could be (SPI_CLOCK_DIV2, SPI_CLOCK_DIV4, SPI_CLOCK_DIVS,
SPI_CLOCK_DIV16, SPI_CLOCK_DIV32, SPI_CLOCK_DIV64,
SPI_CLOCK_DIV128).

e SPI.transfer(val) - SPI transfer is based on a simultaneous send and receive:
the received data is returned in receivedVal.

¢ SPI.beginTransaction(SPISettings(speedMaximum, dataOrder,
dataMode)) - speedMaximum is the clock, dataOrder(MSBFIRST or LSBFIRST),
dataMode(SPI_MODEO, SPI_MODE1, SPI_MODEZ2, or SPI_MODE3).

We have four modes of operation in SPI as follows -

e Mode 0 (the default) - Clock is normally low (CPOL = 0), and the data is sampled
on the transition from low to high (leading edge) (CPHA = 0).

e Mode 1 - Clock is normally low (CPOL = 0), and the data is sampled on the
transition from high to low (trailing edge) (CPHA = 1).

@' tutorialspoint 123

EIMPLYEAEYLEARMNINEG

Arduino

¢ Mode 2 - Clock is normally high (CPOL = 1), and the data is sampled on the
transition from high to low (leading edge) (CPHA = 0).

¢ Mode 3 - Clock is normally high (CPOL = 1), and the data is sampled on the
transition from low to high (trailing edge) (CPHA = 1).

e SPIl.attachlInterrupt(handler) - Function to be called when a slave device
receives data from the master.

Now, we will connect two Arduino UNO boards together; one as a master and the other as
a slave.

e (SS) : pin 10
e (MOSI): pin 11
e (MISO): pin12
e (SCK) : pin13

The ground is common. Following is the diagrammatic representation of the connection
between both the boards -

Let us see examples of SPI as Master and SPI as Slave.

SPlas MASTER

Example

#include <SPI.h>

void setup (void)

{
Serial.begin(115200); //set baud rate to 115200 for usart

EIMPLYEAEYLEARMNINEG

|§J’ ' tutorialspoint 124

Arduino

digitalWrite(SS, HIGH); // disable Slave Select

SPI.begin ();

SPI.setClockDivider(SPI_CLOCK_DIV8);//divide the clock by 8
}

void loop (void)
{
char c;
digitalWrite(SS, LOW); // enable Slave Select
// send test string
for (const char * p = "Hello, world!\r" ; c = *p; p++) {
SPI.transfer (c);
Serial.print(c);
}
digitalWrite(SS, HIGH); // disable Slave Select
delay(2000);

}

SPl as SLAVE

Example

#include <SPI.h>

char buff [50];

volatile byte indx;
volatile boolean process;
void setup (void)

{
Serial.begin (115200);

pinMode (MISO, OUTPUT); // have to send on master in so it set as output
SPCR |= _BV(SPE); // turn on SPI in slave mode
indx = 0; // buffer empty
process = false;
SPI.attachInterrupt(); // turn on interrupt
}
ISR (SPI_STC vect) // SPI interrupt routine
{ byte c = SPDR; // read byte from SPI Data Register

'&j \tutorialspoint 125

EIMPLYEAEYLEARMNINEG

Arduino

if (indx < sizeof buff)
{

buff [indx++] = c;

if (c == "\r")

process = true;

}

void loop (void)

{

if (process)

{

process = false;
Serial.println (buff);
indx= 9;

}

// save data in the next index in the array buff

// check for the end of the word

// reset the process
// print the array on serial monitor

// reset button to zero

@ Mtutorialspoint

EIMPLYEAEYLEARMNINEG

126

Arduino

Arduino - Projects

@tutor‘ialspoint 127

27. Arduino —Blinking LED

LEDs are small, powerful lights that are used in many different applications. To start, we
will work on blinking an LED, the Hello World of microcontrollers. It is as simple as turning
a light on and off. Establishing this important baseline will give you a solid foundation as
we work towards experiments that are more complex.

Components Required

You will need the following components -

e 1x Breadboard

e 1x Arduino Uno R3
e 1Xx LED

1x 330Q Resistor

e 2Xx Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

|
ooooooooo D RS SRR seser e ‘
“s s ee srees sesaw wvnse 2B s sreer TEEEsE seseEr weene

---------------- resseveran
..) DI
--
LA L L LA AL - .. — —
- . . - . - - —’
- — MWW
L - J—
Trevenan
..................... = wa
LR §4
---------------------------------- 2
LG
B
weer sranr srvnn veasl s avee seelr teens e wraan —
....... - L L L L L L L . L L L L L
| - .
—_—
— S
“\
Ia -
gh
g
o~
®
€
3

@' tutorialspoint 128

EIMPLYEAEYLEARMNINEG

Arduino

Note: To find out the polarity of an LED, look at it closely. The shorter of the two legs,
towards the flat edge of the bulb indicates the negative terminal.

Flat Edge

Short Leg

L.

| +

Components like resistors need to have their terminals bent into 90° angles in order to fit
the breadboard sockets properly. You can also cut the terminals shorter.

D

4

@D

MPLYEAEYLEARMNING

@ Mtutorialspoint 129

Arduino

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open the new sketch File by clicking New.

g"nmw-uucu»wo SRR 5 2 shench jentés | Aruns 108 P 3
[!:*_J-Eﬂl Sketch Took Help e Echt Siketch Took Help

New CaleN r

Open.. Cule© =3

Skstchbook , —

Framples ' 1

Close Culew

Save CuleS

Save As.. Carle Shat- S

Upload Culel

Upload Using Progasmmes Clrfs Shifte U —

Page Setup Ctrle Shitte

Print Cule P

Preferences Ctrl+ Comma

Quit CuleQ

Arduino Code

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
*/
// the setup function runs once when you press reset or power the board
void setup()
{
// initialize digital pin 13 as an output.
pinMode(2, OUTPUT);
}
// the loop function runs over and over again forever
void loop()
{
digitalwrite(2, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(2, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

'@j Mtutorialspoint 130

EIMPLYEAEBEYLEARNING

Arduino

Code to Note

pinMode(2, OUTPUT) - Before you can use one of Arduino’s pins, you need to tell Arduino
Uno R3 whether itis an INPUT or OUTPUT. We use a built-in “function” called pinMode() to
do this.

digitalWrite(2, HIGH) - When you are using a pin as an OUTPUT, you can command it
to be HIGH (output 5 volts), or LOW (output 0 volts).

Result

You should see your LED turn on and off. If the required output is not seen, make sure
you have assembled the circuit correctly, and verified and uploaded the code to your
board.

131

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

28. Arduino —Fading LED

This example demonstrates the use of the analogWrite() function in fading an LED off.
AnalogWrite uses pulse width modulation (PWM), turning a digital pin on and off very
quickly with different ratios between on and off, to create a fading effect.

Components Required

You will need the following components-

e 1x Breadboard

e 1x Arduino Uno R3
e 1xLED

e 1x 330Q Resistor

e 2X Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

LR AR L AL LA L - L LN LA AR LA AR LR AL L L) ”
LN L LR R R LU .. L L LR s s L {ﬁ. »
et
R o R Iy &0
é'-
w Pat|
5
=
LA AR AR R R R R AR R AR R R A RN AL AL AL AR AR AR R R A R A R AR R AR AR
] S
— —
LA RN LA RN LA AR R ..I.' LR AR LA N LA AR LA R R R SR Shaene
LA AR LA A LA AR N LR R . T LA LA AR LA A AN LA AL LR —e
—
L1
— _—
LT
— —
— R—
— S
"—"AI.I'\AV-‘ — W—
w — =
82
o

@' tutorialspoint 132

EIMPLYEAEYLEARMNINEG

Arduino

Note: To find out the polarity of an LED, look at it closely. The shorter of the two legs
towards the flat edge of the bulb indicates the negative terminal.

Flat Edge

Short Leg

L.

| +

Components like resistors need to have their terminals bent into 90° angles in order to fit
the breadboard sockets properly. You can also cut the terminals shorter.

D

4

rAID-

MPLYEAEYLEARMNING

'@j Mtutorialspoint 133

Arduino

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking on New.

1 shetch _andTs | Arduins 1 84 o e

- T thwtch Janiée | Arsano 108 O |
[Fie] kbt Skesch Tooks Melp 06 Sah Shetc ool ek
New CuteN “
Open. CuteQ -
Shetchbook .
Exarrples .
Close Cttew
Save Ctrte s
Sove As. CuteShitt+5
Upiosd Culels
Uplosad Using Progeamenes CulsShift« U
Page Setup Ctrte Shitte P
Prm Cute?
Preferences Ctrie Comma
Qua e

Arduino Code

/*
Fade
This example shows how to fade an LED on pin 9

using the analogWrite() function.

The analogWrite() function uses PWM, so if you want to change the pin you're
using, be

sure to use another PWM capable pin. On most Arduino, the PWM pins are identified
with

a "~" sign, like ~3, ~5, ~6, ~9, ~10 and ~11.

*/
int led = 9; // the PWM pin the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

'@j Mtutorialspoint 134

EIMPLYEAEBEYLEARNING

Arduino

// the setup routine runs once when you press reset:

void setup()

{
// declare pin 9 to be an output:

pinMode(led, OUTPUT);

// the loop routine runs over and over again forever:
void loop()

{
// set the brightness of pin 9:

analogWrite(led, brightness);

// change the brightness for next time through the loop:

brightness = brightness + fadeAmount;

// reverse the direction of the fading at the ends of the fade:
if (brightness == @ || brightness == 255)
{
fadeAmount = -fadeAmount ;
}
// wait for 30 milliseconds to see the dimming effect

delay(300);

Code to Note

After declaring pin 9 as your LED pin, there is nothing to do in the setup() function of your
code. The analogWrite() function that you will be using in the main loop of your code
requires two arguments: One, telling the function which pin to write to and the other
indicating what PWM value to write.

In order to fade the LED off and on, gradually increase the PWM values from 0 (all the way
off) to 255 (all the way on), and then back to 0, to complete the cycle. In the sketch given
above, the PWM value is set using a variable called brightness. Each time through the
loop, it increases by the value of the variable fadeAmount.

If brightness is at either extreme of its value (either 0 or 255), then fadeAmount is changed
to its negative. In other words, if fadeAmount is 5, then it is set to -5. If it is -5, then it is
set to 5. The next time through the loop, this change causes brightness to change direction
as well.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 135

Arduino

analogWrite() can change the PWM value very fast, so the delay at the end of the sketch
controls the speed of the fade. Try changing the value of the delay and see how it changes
the fading effect.

Result

You should see your LED brightness change gradually.

MPLYEAESEYLEARHNINGEG

@ Mtutorialspoint 136

29. Arduino — Reading Analog Voltage

This example will show you how to read an analog input on analog pin 0. The input is
converted from analogRead() into voltage, and printed out to the serial monitor of the
Arduino Software (IDE).

Components Required
You will need the following components:
e 1x Breadboard
¢ 1x Arduino Uno R3
e 1x 5K variable resistor (potentiometer)

e 2X Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

-~

Pat

LITTT]

i
Arduise

|11 ‘IIILJ | |

HEREER

Potentiometer

A potentiometer (or pot) is a simple electro-mechanical transducer. It converts rotary or
linear motion from the input operator into a change of resistance. This change is (or can
be) used to control anything from the volume of a hi-fi system to the direction of a huge
container ship.

@' tutorialspoint 137

EIMPLYEAEYLEARMNINEG

Arduino

The pot as we know it was originally known as a rheostat (essentially a variable wirewound
resistor). The variety of available pots is now quite astonishing, and it can be very difficult
for the beginner (in particular) to work out which type is suitable for a given task. A few
different pot types, which can all be used for the same task makes the job harder.

Rotatable
control
shaft

Sliding
contact
CONLaC ™ Resistive strip

B

The image on the left shows the standard schematic symbol of a pot. The image on the
right is the potentiometer.

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

D whanch JasTs | hedome 108 [ortio G D thatet janlsic] Andume 108 [5
e Bt Simteh Took Help fae Idnt Shetch Tooks Melp
e CldeN Y

Open.. Cirde O
Sketchbook

Braroples .
Close Tt w

e Ces

Swon Ax Cirte Shire %
Upload (SR
Uplosd Uing Programenes Cirks Shit= U
Page Setup Chibe Shit-P p=—=1
Prre Cite
Preferences Ciete Comme
Quit e Q

'@J Mtutorialspoint 138

EIMPLYEAEYLEARMNINEG

Arduino

Arduino Code

/*
ReadAnalogVoltage

Reads an analog input on pin ©, converts it to voltage, and prints the result
to the serial monitor.

Graphical representation is available using serial plotter (Tools > Serial
Plotter menu)

Attach the center pin of a potentiometer to pin A@, and the outside pins to
+5V and ground.

*/

// the setup routine runs once when you press reset:
void setup()
{
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
}
// the loop routine runs over and over again forever:
void loop()
{
// read the input on analog pin @:
int sensorValue = analogRead(A9);
// Convert the analog reading (which goes from @ - 1023) to a voltage (@ - 5V):
float voltage = sensorValue * (5.0 / 1023.0);
// print out the value you read:

Serial.println(voltage);

Code to Note

In the program or sketch given below, the first thing that you do in the setup function is
begin serial communications, at 9600 bits per second, between your board and your
computer with the line:

Serial.begin(9600);

In the main loop of your code, you need to establish a variable to store the resistance
value (which will be between 0 and 1023, perfect for an int datatype) coming from your
potentiometer:

'&j \tutorialspoint 139

EIMPLYEAEYLEARMNINEG

Arduino

int sensorValue = analogRead(A0);

To change the values from 0-1023 to a range that corresponds to the voltage, the pin is
reading, you need to create another variable, a float, and do a little calculation. To scale
the numbers between 0.0 and 5.0, divide 5.0 by 1023.0 and multiply that by sensorValue:

float voltage= sensorValue * (5.0 / 1023.0);

Finally, you need to print this information to your serial window. You can do this with the
command Serial.printin() in your last line of code:

Serial.printin(voltage)

Now, open Serial Monitor in the Arduino IDE by clicking the icon on the right side of the
top green bar or pressing Ctrl+Shift+M.

sketch_jan07a | Arduino 1.0.6 = HoE <

File Edit Sketch Tools Help

sketch_jan07a §

'/ the setup routine runs once when you press reset:

void setup()

{
// 1nitialize serial communication at 9600 bits per second:
Serial.begin(9600) ;

}

open serial
monitor by

press this icon

// the loop routine runs over and over again forewver:
woid loop()
{
// read the input on analog pin 0:
int sensorValue = analogRead(a0);
// Convert the analog reading (which goes from 0 - 1023) to a voltage (0 -
float wvoltage = sensor¥Value * (5.0 / 1023.0);
f/ print out the walue you read:
Serial.println(voltage);

}

m

5V):

O o T g e oo oo oo oo oo oIo oo ot oonaoavoppvyecy

:\Program Files\Arduino\hardware\tools\avr\bin\avr-objcopy -0 ihex -R .eeprom

C:\Users\ENG~1.AHM\AppData\Local\Temp\build8688035035142164076.tmp\sketch jan07a.cpp.elf
:\Users\ENG~1.AHM\AppData\Local\Temp\build8688035035142164076.tmp\sketch jan07a.cpp.hex

25 Arduino Uno on COM11

Result

You will see a steady stream of numbers ranging from 0.0 - 5.0. As you turn the pot, the
values will change, corresponding to the voltage at pin AO.

EIMPLYEAEYLEARMNINEG

'@J Mtutorialspoint 140

30. Arduino — LED Bar Graph

This example shows you how to read an analog input at analog pin 0, convert the values
from analogRead() into voltage, and print it out to the serial monitor of the Arduino
Software (IDE).

Components Required

You will need the following components:

e 1x Breadboard

¢ 1x Arduino Uno R3

e 1x 5k ohm variable resistor (potentiometer)
e 2X Jumper

e 8x LED or you can use (LED bar graph display as shown in the image below)

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

Frr e e
ChEes e

SE s res e
L

A
SEr N

R R
R
L

Srr s s s R . e
L L L L L L - - L L L LR L B L L ...
L L L L L L L A - - - . . A L L L L L LA L L L LA
AL L L L L L - - . - - . LR L) L L L L L L -
C L LR I L .. L AL L L L LA L B L L LR
LR B L L .. L L L L .. L L AL L L L “r. L L L L L
Chr e s s a e . - . Io . . B B RN I
R AR . BRIl T vvs sffove srvvvs wnn
R R R O R R R A T N

OO0 O

@' tutorialspoint 141

EIMPLYEAEYLEARMNINEG

Arduino

!

. A —
100kQ

!MI L1

LITTT]

LTTTTT

o e

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit. Open a new

sketch File by clicking New.

Qumﬂundh]lmulbd
Fiel Edt Sheuh Took Help
Mew
Open-.
Sketchbook
Exarmples
Chose
e
Sove A
Upioad
Uplosd Lhing Progremeer
Page Sevvp
Pre

Preferences

CoaeN
Cede O

Core'wy
Cotes
CtdeShin.S
Code)
CudeShin-U

Cole St P
Crie®

Code Comma

CeQ

T sherch jonbic | Ardunc L 04 [T |
Tie [da Shesch Tool Help

'@J Mtutorialspoint

EIMPLYEAEYLEARMNINEG

142

Arduino

10 Segment LED Bar Graph

satmpas)

0 " " o " " .-

m TTTT0 ;[‘

Y

These 10-segment bar graph LEDs have many uses. With a compact footprint, simple
hookup, they are easy for prototype or finished products. Essentially, they are 10 individual
blue LEDs housed together, each with an individual anode and cathode connection.

They are also available in yellow, red, and green colors.

Note: The pin out on these bar graphs may vary from what is listed on the datasheet.
Rotating the device 180 degrees will correct the change, making pin 11 the first pin in line.

Arduino Code

/*
LED bar graph

Turns on a series of LEDs based on the value of an analog sensor. This is a
simple way to make a bar graph display. Though this graph uses 8LEDs, you can
use any number by changing the LED count and the pins in the array.

This method can be used to control any series of digital outputs that depends on
an analog input.

*/
// these constants won't change:
const int analogPin = A®; // the pin that the potentiometer is attached to
const int ledCount = 8; // the number of LEDs in the bar graph

int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9}; // an array of pin numbers to which
LEDs are attached

void setup()

{
// loop over the pin array and set them all to output:

@ Mtutorialspoint 143

EIMPLYEAEBEYLEARNING

Arduino

for (int thisLed = ©; thisLed < ledCount; thisLed++)

{
pinMode(ledPins[thisLed], OUTPUT);
}
}
void loop()
{
// read the potentiometer:
int sensorReading = analogRead(analogPin);
// map the result to a range from © to the number of LEDs:
int ledLevel = map(sensorReading, @, 1023, @, ledCount);
// loop over the LED array:
for (int thisLed = ©; thisLed < ledCount; thisLed++)

// if the array element's index is less than ledLevel,
// turn the pin for this element on:

if (thisLed < ledLevel)
{

digitalWrite(ledPins[thisLed], HIGH);

}

// turn off all pins higher than the ledLevel:

else

{
digitalWrite(ledPins[thisLed], LOW);

Code to Note

The sketch works like this: first, you read the input. You map the input value to the output
range, in this case ten LEDs. Then you set up a for-loop to iterate over the outputs. If
the output's number in the series is lower than the mapped input range, you turn it on. If
not, you turn it off.

Result

You will see the LED turn ON one by one when the value of analog reading increases and
turn OFF one by one while the reading is decreasing.

'&j \tutorialspoint 144

EIMPLYEAEYLEARMNINEG

31. Arduino — Keyboard Logout

This example uses the Keyboard library to log you out of your user session on your
computer when pin 2 on the ARDUINO UNO is pulled to ground. The sketch simulates the
keypress in sequence of two or three keys at the same time and after a short delay, it
releases them.

Warning: When you use the Keyboard.print() command, Arduino takes over your
computer's keyboard. To ensure you do not lose control of your computer while running a
sketch with this function, set up a reliable control system before you call Keyboard.print().
This sketch is designed to only send a Keyboard command after a pin has been pulled to
ground.

Components Required
You will need the following components:
e 1x Breadboard
e 1x Arduino Leonardo, Micro, or Due board

e 1x pushbutton

e 1x Jumper

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image below.

B 3 oA
EEEEEEEREE
a
E E . e e . e o 0 .

@' tutorialspoint 145

EIMPLYEAEYLEARMNINEG

Sketch

Arduino

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

For this example, you need to use Arduino IDE 1.6.7

Upload Uhing Programeses Clsts Shits U

Page Setup Cote Skt » P
Prwe Cre®
Preferences Crrte Comma
Qua CaeQ

2 shateh e | Aedtsing 154

Fiel gt Swech Took Help
Hew CoaeN
Open... Code O
Sketchbook .
Erample ’
Close CodeW
Saer Cotes
Save As.. CodeShin. 5
Upioad Crde)

T sherch jantic | atdune L 04
Fie [da Shetsch Tool Help

Note: You must include the keyboard library in your Arduino library file. Copy and paste
the keypad library file inside the file with the name libraries (highlighted) as shown in the

following screenshot.

&l

Qrganize = Include in library »

{ Favorites

M Dezktop

& Downloads

2 Recent Places
L3 Drophbox

s Libraries
| 4] Decuments
‘J' Music
Il Plctures

B videcs

W Computer
&y Local Disk (C:)
o MTC MASTER (D:)
. Information Technolgy (2) (E1)
o My S\W prog (F:)
. Information Technolgy (Gi)
[[i] DVD RW Drive (H:) MIKROE
43 CD Drive (L)

€ Network

» Computer » Local Disk (C) » Program Files » Arduine »

Share with = Burn New folder

MName

trivery
examipley
hardware
java
lib
libraries
reference
tools
@ arduino
@ arduino_debug
%) cygiconv-2.dll
%] cygwinl.dll
%) libush0.dll
| revisions
@ rxtxSerial.dll

E? uninstall

Date mocdifie

03/08/201%07:33 File fal

03/08/2015 07,33 File folcler
02/10/2015 03:20 File folder
03/08/2015 07:34 File folder

03/08/2015 0734

File folder

L8/10/2015 07:52 ., File folder

03/08/2015 07:34 File folder
03/08/2015 07:34 File folder
16/09/2014 034 Application
16/08/2014 03:46 Application
16/09/2014 03:14¢ Application extens..
16/09/2014 03:46 Application exten
16/00/2014 0346 Application exten
16/09/2014 03:.46 Text Documaent
16/09/2014 03:46 Application exten

) 150 Application

here Vaul can
find Arduino
1D il

J4d KE

EIMPLYEAEYLEARMNINEG

'@j Mtutorialspoint

146

Arduino

Arduino Code

/*
Keyboard logout
This sketch demonstrates the Keyboard library.
When you connect pin 2 to ground, it performs a logout.
It uses keyboard combinations to do this, as follows:
On Windows, CTRL-ALT-DEL followed by ALT-1
On Ubuntu, CTRL-ALT-DEL, and ENTER
On 0SX, CMD-SHIFT-q
To wake: Spacebar.
Circuit:
* Arduino Leonardo or Micro
* wire to connect D2 to ground.

*/

#define 0SX ©
#tdefine WINDOWS 1
#tdefine UBUNTU 2
#include "Keyboard.h"
// change this to match your platform:
int platform = WINDOWS;
void setup()
{
// make pin 2 an input and turn on the
// pullup resistor so it goes high unless
// connected to ground:
pinMode(2, INPUT_PULLUP);
Keyboard.begin();
}
void loop()
{
while (digitalRead(2) == HIGH) {
// do nothing until pin 2 goes low
delay(500);

}
delay(1000);

'&j \tutorialspoint 147

EIMPLYEAEYLEARMNINEG

Arduino

switch (platform) {
case 0SX:
Keyboard.press(KEY_LEFT_GUI);
// Shift-Q logs out:
Keyboard.press(KEY_LEFT_SHIFT);
Keyboard.press('Q");
delay(100);

// enter:
Keyboard.write(KEY_RETURN);
break;

case WINDOWS:
// CTRL-ALT-DEL:
Keyboard.press(KEY_LEFT_CTRL);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press(KEY_DELETE);
delay(100);
Keyboard.releaseAll();
//ALT-1:
delay(2000);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press('l');
Keyboard.releaseAll();
break;

case UBUNTU:
// CTRL-ALT-DEL:
Keyboard.press(KEY_LEFT_CTRL);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press(KEY_DELETE);
delay(1000);
Keyboard.releaseAll();
// Enter to confirm logout:
Keyboard.write(KEY_RETURN);
break;

}
// do nothing:

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

148

Arduino

while (true);

Keyboard.releaseAll();
// enter:
Keyboard.write(KEY_RETURN);
break;
case WINDOWS:
// CTRL-ALT-DEL:
Keyboard.press(KEY_LEFT_CTRL);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press(KEY_DELETE);
delay(100);
Keyboard.releaseAll();
//ALT-1:
delay(2000);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press('1l");
Keyboard.releaseAll();
break;
case UBUNTU:
// CTRL-ALT-DEL:
Keyboard.press(KEY_LEFT_CTRL);
Keyboard.press(KEY_LEFT_ALT);
Keyboard.press(KEY_DELETE);
delay(1000);
Keyboard.releaseAll();
// Enter to confirm logout:
Keyboard.write(KEY_RETURN);
break;
}
// do nothing:

while (true);

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

149

Arduino

Code to Note

Before you upload the program to your board, make sure you assign the correct OS you
are currently using to the platform variable.

While the sketch is running, pressing the button will connect pin 2 to the ground and the
board will send the logout sequence to the USB connected PC.

Result
When you connect pin 2 to the ground, it performs a logout operation.
It uses the following keyboard combinations to logout -

¢ On Windows, CTRL-ALT-DEL followed by ALT-I
e On Ubuntu, CTRL-ALT-DEL, and ENTER
e On OSX, CMD-SHIFT-q

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 150

32. Arduino — Keyboard Message

In this example, when the button is pressed, a text string is sent to the computer as
keyboard input. The string reports the number of times the button is pressed. Once you
have the Leonardo programmed and wired up, open your favorite text editor to see the
results.

Warning: When you use the Keyboard.print() command, the Arduino takes over your
computer's keyboard. To ensure you do not lose control of your computer while running a
sketch with this function, set up a reliable control system before you call
Keyboard.print(). This sketch includes a pushbutton to toggle the keyboard, so that it
only runs after the button is pressed.

Components Required

You will need the following components:
e 1x Breadboard
e 1x Arduino Leonardo, Micro, or Due board
e 1x momentary pushbutton

e 1x 10k ohm resistor

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

L L vV 0.9V - s s 9
L I I I I R B I
L L I S I R R L R L I IR B
L I I L R D R L I B B B
'. L R I R I T R R R R I
‘. L I I DR B I I I R I R
A.
°) -
.’ ‘ - L L I R L D L L I I B I B
o . L I T I D R R I DR B
.' . L L I D I L R DR R I I DR B
o . L L L I I R I I R B B
o . - L R L R R L R I
° °
- * LR - L L
.- . s L B B L

@' tutorialspoint 151

EIMPLYEAEYLEARMNINEG

Sketch

Arduino

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

2 shatch Jandi7a | Aetiing 154 199 == 5 shonch Joribae | Ardusmno L 18 —
Fie Bt Seerch Took Help Fde [da Sherch Took Help
4 O ™ B

o ow 2 OO0 BED

Open.-. Code O

Sketchbook o) botth_jant e

Exsrrples .

Close Corrw

e Cites

Save As.. CodeShin. 5

Upload Cide)

Upload Lhing Programeses Cists Shifts U

Page Setup Cole Shelt« P

Prwe Cile @

Prefeencen Ctrte Comma

Qua CieQ

Arduino Code

/*
Keyboard Message test For the Arduino Leonardo and Micro, Sends a text string
when a button is pressed.

The circuit:
* pushbutton attached from pin 4 to +5V
* 10-kilohm resistor attached from pin 4 to ground
*/
#include "Keyboard.h"
const int buttonPin = 4; // input pin for pushbutton
int previousButtonState = HIGH; // for checking the state of a pushButton
int counter = 0; // button push counter
void setup() {
pinMode(buttonPin, INPUT); // make the pushButton pin an input:
Keyboard.begin(); // initialize control over the keyboard:
}
void loop() {
int buttonState = digitalRead(buttonPin); // read the pushbutton:

if ((buttonState != previousButtonState)&& (buttonState == HIGH)) // and it's
currently pressed:

@' tutorialspoint 152

EIMPLYEAEBEYLEARNING

Arduino

// increment the button counter
counter++;
// type out a message
Keyboard.print("You pressed the button ");
Keyboard.print(counter);
Keyboard.println(" times.");
}
// save the current button state for comparison next time:

previousButtonState = buttonState;

Code to Note

Attach one terminal of the pushbutton to pin 4 on Arduino. Attach the other pin to 5V. Use
the resistor as a pull-down, providing a reference to the ground, by attaching it from pin
4 to the ground.

Once you have programmed your board, unplug the USB cable, open a text editor and put
the text cursor in the typing area. Connect the board to your computer through USB again
and press the button to write in the document.

Result

By using any text editor, it will display the text sent via Arduino.

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 153

33. Arduino — Mouse Button Control

Using the Mouse library, you can control a computer's onscreen cursor with an Arduino
Leonardo, Micro, or Due.

This particular example uses five pushbuttons to move the onscreen cursor. Four of the
buttons are directional (up, down, left, right) and one is for a left mouse click. Cursor
movement from Arduino is always relative. Every time an input is read, the cursor's
position is updated relative to its current position.

Whenever one of the directional buttons is pressed, Arduino will move the mouse, mapping
a HIGH input to a range of 5 in the appropriate direction.

The fifth button is for controlling a left-click from the mouse. When the button is released,
the computer will recognize the event.

Components Required

You will need the following components:

e 1x Breadboard
e 1x Arduino Leonardo, Micro or Due board
e 5x 10k ohm resistor

¢ 5x momentary pushbuttons

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image below.

L1 ”
V3 sv Via o3 b— — »
Power
= RST D12 | L, =l
VW
w— AREF LITH A fa ”
. 1080
— wree Arduing ow =
— NG 00— S
L —W —
D6 o "
; 100 s1
D7 o
S o b=
D5 P 2
}) 82
— AL De
P
- A 03— AAA —”
> Wy
— A2 § o2 R 8
— A3 g D1 = 1
e
— A D0 = W o |
— A R
SOA e
GND

@' tutorialspoint 154

EIMPLYEAEYLEARMNINEG

Sketch

Arduino

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

For this example, you need to use Arduino IDE 1.6.7

D shatth Jasd?a | hesting 104
Tl gt Sheuch Took Help

I ==

New CoaeN :‘:
Open.. Cod. O

Sketchbook . 2
Erarrples . s
Chose Corew

e Cotes

Save As.. CodeShin. 5

Upioasd Cirel)

Upload Lhing Programeser Clsfs Shits U

Page Sevup Code Shelt» P

Pre Crde®

Preferences Crte Comma

Que CieQ

T sherch jonbic | atdunc L 04
Fie [da Shetch Tool Help

Arduino Code

/*

Button Mouse Control

For Leonardo and Due boards only .Controls the mouse from five pushbuttons on an
Arduino Leonardo, Micro or Due.

Hardware:

* 5 pushbuttons attached to D2, D3, D4, D5, D6

The mouse movement is always relative. This sketch reads

four pushbuttons, and uses them to set the movement of the mouse.

WARNING: When you use the Mouse.move() command, the Arduino takes

over your mouse! Make sure you have control before you use the mouse commands.
*/

#include "Mouse.h"
// set pin numbers for the five buttons:
const int upButton = 2;

const int downButton = 3;

w' tutorialspoint 155

EIMPLYEAEBEYLEARNING

Arduino

const int leftButton = 4;

const int rightButton = 5;

const int mouseButton = 6;

int range = 5; // output range of X or Y movement; affects movement speed
int responseDelay = 10; // response delay of the mouse, in ms

void setup()

{
// initialize the buttons' inputs:
pinMode (upButton, INPUT);
pinMode(downButton, INPUT);
pinMode(leftButton, INPUT);
pinMode(rightButton, INPUT);
pinMode(mouseButton, INPUT);

// initialize mouse control:
Mouse.begin();

}
void loop()

{
// read the buttons:
int upState = digitalRead(upButton);
int downState = digitalRead(downButton);
int rightState = digitalRead(rightButton);
int leftState = digitalRead(leftButton);

int clickState = digitalRead(mouseButton);

// calculate the movement distance based on the button states:
int xDistance = (leftState - rightState) * range;

int yDistance = (upState - downState) * range;

// if X or Y is non-zero, move:
if ((xDistance != @) || (yDistance != @)) {

Mouse.move(xDistance, yDistance, 0);

// if the mouse button is pressed:

if (clickState == HIGH) {

'@. \tutorialspoint

EIMPLYEAEYLEARMNINEG

156

Arduino

// if the mouse is not pressed, press it:
if (!Mouse.isPressed(MOUSE_LEFT)) {
Mouse.press(MOUSE_LEFT);

}

// else the mouse button is not pressed:
else {
// if the mouse is pressed, release it:
if (Mouse.isPressed(MOUSE_LEFT)) {
Mouse.release(MOUSE_LEFT);

}

// a delay so the mouse does not move too fast:

delay(responseDelay);

Code to Note

Connect your board to your computer with a micro-USB cable. The buttons are connected
to digital inputs from pins 2 to 6. Make sure you use 10k pull-down resistors.

'&j. tutorialspoint 157

EIMPLYEAEYLEARMNINEG

34. Arduino — Keyboard Serial

This example listens for a byte coming from the serial port. When received, the board
sends a keystroke back to the computer. The sent keystroke is one higher than what is
received, so if you send an "a" from the serial monitor, you will receive a "b" from the
board connected to the computer. A "1" will return a "2" and so on.

Warning: When you use the Keyboard.print() command, the Leonardo, Micro or Due
board takes over your computer's keyboard. To ensure you do not lose control of your
computer while running a sketch with this function, set up a reliable control system before
you call Keyboard.print(). This sketch is designed to only send a Keyboard command after
the board has received a byte over the serial port.

Components Required

You will need the following components:

e 1x Arduino Leonardo, Micro, or Due board

Procedure

Just connect your board to the computer using USB cable.

outnpJay

-
m
o
=
>
A
<
o

@' tutorialspoint 158

EIMPLYEAEYLEARMNINEG

Sketch

Arduino

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

D shatth jasda | Aedhsing 184
el gt Swech Took Help
Hew
Open...
Sketchbook
Easmplen
Close
ey
Sove As..
Upload
Upload Uhing Programees

Page Sevvp

Preferences

CoaeN
Code 0

Core'w
Cotes
CodeShin.5
Crdey
CudeShin- U

Code Shaft» P
Cre®

Code Comma

CeQ

T sherch janbic | atdunc L4
Tie [da Shetch Tool Help

Notes: You must include the keypad library in your Arduino library file. Copy and paste
the keypad library file inside the file with the name ‘libraries’ highlighted with yellow color.

Gl
Qrganize =

U Favorites

M Desktop

& Downloads

2 Recent Places
L3 Dropbox

s Libraries
[¥ Documents
o Music
[l Pletures
B Videcy
W Computer
ﬁ. Local Disk (C:)
wu MTC MASTER (D:)

o My S\W prog (F:)

¢4 CD Drive (I)

€ Network

Include in library

o Information Technolgy (2) (E:)

. Information Technolgy (G)
[[¥] DVD RW Drive (H:) MIKROE

Share with =
Mame

drivery
exampley
hardware
java
lib
libraries
reference
tools
&9 arduino
(6} arduino_debug
%) cygiconv-2.dil
%] cygwinl.dll
1] libush0,dll
| revisions
%] extxSerial.dil

®F uninstall

» Computer » Local Digk (C:) » Program Files » Arduine »

Date mocifiec

13/08/2015 0 File fal

13/08/201507 File folcler
12/10/2015 03;20 File folder
03/08/2015 07:34 File folder
03/08/2015 0734 File folder

1871072015 07:52 ..

03/08/201507:34 File folder

03/08/201507:34 File folder

16/09/2014 034 Application 44 KE
16/08/2014 03:46 ... Application 83 KE
16/09/2014 03:46 ... Application extens.. 947 KB
16/09/2014 03:46 Application exten 18289 KB
16/00/2014 0346 Application exter 43 KB
16/09/2014 0346 lext Document 19 KB
16/09/2014 03:46 Application exten 16 KB
) 150 Applicatior 402 KB

File folder

here vau can
find Arduino
b fike

'@J Mtutorialspoint

EIMPLYEAEYLEARMNINEG

159

Arduino

Arduino Code

/*
Keyboard test

For the Arduino Leonardo, Micro or Due Reads a byte from the serial port, sends
a keystroke back. The sent keystroke is one higher than what's received, e.g. if
you send a, you get b, send

A you get B, and so forth.
The circuit:
* none
*/
#include "Keyboard.h"
void setup() {
// open the serial port:
Serial.begin(9600);
// initialize control over the keyboard:
Keyboard.begin();
}
void loop() {
// check for incoming serial data:
if (Serial.available() > 0) {
// read incoming serial data:
char inChar = Serial.read();
// Type the next ASCII value from what you received:

Keyboard.write(inChar + 1);

Code to Note

Once programed, open your serial monitor and send a byte. The board will reply with a
keystroke, that is one number higher.

Result

The board will reply with a keystroke that is one number higher on Arduino IDE serial
monitor when you send a byte.

'&j \tutorialspoint 160

EIMPLYEAEYLEARMNINEG

Arduino

Arduino — Sensors

@tutor‘ialspoint 161

35. Arduino — Humidity Sensor

In this section, we will learn how to interface our Arduino board with different sensors. We
will discuss the following sensors -

e Humidity sensor (DHT22)

e Temperature sensor (LM35)

e Water detector sensor (Simple Water Trigger)
¢ PIR SENSOR

e ULTRASONIC SENSOR

e GPS

Humidity Sensor (DHT22)

The DHT-22 (also named as AM2302) is a digital-output, relative humidity, and
temperature sensor. It uses a capacitive humidity sensor and a thermistor to measure the
surrounding air, and sends a digital signal on the data pin.

In this example, you will learn how to use this sensor with Arduino UNO. The room
temperature and humidity will be printed to the serial monitor.

The DHT-22 Sensor

DHT22 pins
vccC
DATA
NC
GND

o W N e

The connections are simple. The first pin on the left to 3-5V power, the second pin to the
data input pin and the right-most pin to the ground.

@' tutorialspoint 162

EIMPLYEAEYLEARMNINEG

Technical Details
e Power: 3-5V
e Max Current: 2.5mA
e Humidity: 0-100%, 2-5% accuracy
¢ Temperature: -40 to 80°C, £0.5°C accuracy

Components Required
You will need the following components:
e 1x Breadboard
e 1x Arduino Uno R3
e 1x DHT22
e 1X10K ohm resistor

Procedure

Follow the circuit diagram and hook up the components
the image below.

Arduino

on the breadboard as shown in

Part1

RHT1

Arduino
BT

Humidity
and
Temperature
Sensor
RHT03

MPLYEAEYLEARMNING

@ Mtutorialspoint

163

Arduino

e
SO N PP e s v Y agmt Y YV

R I LR R
masEm
masem
musem
L I I O R R

vovevevesvevvesvvesblllvecsveons

E——

R I R

HLOOL3NNE

v

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

2 shatih Jasd?a | heding 104 -85 T sherch Janbic | Atdunc L 06 —
el et Seerch Tooks Help Fie [da Shesch Took Help

Mew CoaeN FoY-0:-1+1+

Sketchbook .

Ersrrples . 3

Chose Cotrw

e Cotes

Save As.. CodeShin. s

Upload Crdel

Upload Lhing Programeses Ciafe Shits U

Page Setup Cote Shn+ P p =4

Pree Crie®
Preferences Crte Comma
Qua CeQ

Arduino Code

// Example testing sketch for various DHT humidity/temperature sensors
#include "DHT.h"
#tdefine DHTPIN 2 // what digital pin we're connected to

// Uncomment whatever type you're using!

|§J’ ' tutorialspoint 164

EIMPLYEAEYLEARMNINEG

Arduino

//#define DHTTYPE DHT11 // DHT 11
#tdefine DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
//#define DHTTYPE DHT21 // DHT 21 (AM2301)
// Connect pin 1 (on the left) of the sensor to +5V
// NOTE: If using a board with 3.3V logic like an Arduino Due connect pin 1
// to 3.3V instead of 5V!
// Connect pin 2 of the sensor to whatever your DHTPIN is
// Connect pin 4 (on the right) of the sensor to GROUND
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor
// Initialize DHT sensor.
// Note that older versions of this library took an optional third parameter to
// tweak the timings for faster processors. This parameter is no longer needed
// as the current DHT reading algorithm adjusts itself to work on faster procs.
DHT dht(DHTPIN, DHTTYPE);
void setup() {
Serial.begin(9600);
Serial.println("DHTxx test!");

dht.begin();

}

void loop() {
delay(2000); // Wait a few seconds between measurements
float h = dht.readHumidity();

// Reading temperature or humidity takes about 250 milliseconds!

float t = dht.readTemperature();

// Read temperature as Celsius (the default)

float f = dht.readTemperature(true);

// Read temperature as Fahrenheit (isFahrenheit = true)

// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t) || isnan(f))

Serial.println("Failed to read from DHT sensor!");

return;

'&j \tutorialspoint 165

EIMPLYEAEYLEARMNINEG

Arduino

// Compute heat index in Fahrenheit (the default)
float hif = dht.computeHeatIndex(f, h);

// Compute heat index in Celsius (isFahreheit = false)

float hic = dht.computeHeatIndex(t, h, false);

Serial.print ("Humidity: ");
Serial.print (h);

Serial.print (" %\t");
Serial.print ("Temperature: ");
Serial.print (t);

Serial.print (" *C ");
Serial.print (f);

Serial.print (" *F\t");
Serial.print ("Heat index: ");
Serial.print (hic);
Serial.print (" *C ");
Serial.print (hif);
Serial.println (" *F");

Code to Note

DHT22 sensor has four terminals (Vcc, DATA, NC, GND), which are connected to the board
as follows:

e DATA pin to Arduino pin number 2
e Vcc pin to 5 volt of Arduino board
e GND pin to the ground of Arduino board

¢ We need to connect 10k ohm resistor (pull up resistor) between the DATA and the
Vcc pin

Once hardware connections are done, you need to add DHT22 library to your Arduino
library file as described earlier.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 166

Arduino

Result

You will see the temperature and humidity display on serial port monitor which is updated
every 2 seconds.

MPLYEAEYLEARMNING

@ Mtutorialspoint 167

36. Arduino — Temperature Sensor

The Temperature Sensor LM35 series are precision integrated-circuit temperature devices
with an output voltage linearly proportional to the Centigrade temperature.

The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin,
as the user is not required to subtract a large constant voltage from the output to obtain
convenient Centigrade scaling. The LM35 device does not require any external calibration
or trimming to provide typical accuracies of £%°C at room temperature and £34°C over a
full =55°C to 150°C temperature range.

| Cannection Diagrams

TO.82
Plastic Package

Vi g ON

| Dimensions

| = LM35
@ e S bl
88 2

Technical Specifications
e Calibrated directly in Celsius (Centigrade)
e Linear + 10-mV/°C scale factor
e 0.5°C ensured accuracy (at 25°C)
e Rated for full =55°C to 150°C range

e Suitable for remote applications

@' tutorialspoint 168

EIMPLYEAEYLEARMNINEG

Arduino

Components Required

You will need the following components:
e 1x Breadboard
e 1x Arduino Uno R3

e 1x LM35 sensor

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

Patt

e

.......................

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

@2 wanch jandVa | Arduinz 162 = e i D Rerch janktc | dedbano 100 B e =
[File) £t Sketch Took Help Fie Edn Skeach Tools Help

Mrw CudeN

Open Cihr O

Skmzhbook .

Eranples ' .

Clone Ciiew

Save Cutes

Seove As_ e Shitte S

Upload Cuwde)

Upload Useng Progremmer Cirde Shifte U

Page tetup Cirde Shatta @ -

Pt Cike P

Peeferences Cryte Conmms

Quet e

EIMPLYEAEYLEARMNINEG

'@J Mtutorialspoint 169

Arduino

Arduino Code

float temp;

int tempPin = ©;

void setup()

{

Serial.begin(9600);

}

void loop()

{

temp = analogRead(tempPin);

// read analog volt from sensor and save to variable temp

temp = temp * 0.48828125;

// convert the analog volt to its temperature equivalent
Serial.print("TEMPERATURE = ");

Serial.print(temp); // display temperature value
Serial.print("*C");

Serial.println();

delay(1000); // update sensor reading each one second

}

Code to Note

LM35 sensor has three terminals - Vs, Vout and GND. We will connect the sensor as
follows:

e Connect the +Vs to +5v on your Arduino board.
e Connect Vout to Analog0 or A0 on Arduino board.
e Connect GND with GND on Arduino.

The Analog to Digital Converter (ADC) converts analog values into a digital approximation
based on the formula ADC Value = sample * 1024 / reference voltage (+5v). So with a
+5 volt reference, the digital approximation will be equal to input voltage * 205.

Result

You will see the temperature display on the serial port monitor which is updated every
second.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 170

37. Arduino — Water Detector / Sensor

Water sensor brick is designed for water detection, which can be widely used in sensing
rainfall, water level, and even liquid leakage.

Connecting a water sensor to an Arduino is a great way to detect a leak, spill, flood, rain,
etc. It can be used to detect the presence, the level, the volume and/or the absence of
water. While this could be used to remind you to water your plants, there is a better Grove
sensor for that. The sensor has an array of exposed traces, which read LOW when water
is detected.

In this chapter, we will connect the water sensor to Digital Pin 8 on Arduino, and will enlist
the very handy LED to help identify when the water sensor comes into contact with a
source of water.

Components Required

You will need the following components:

e 1x Breadboard

e 1x Arduino Uno R3
e 1x Water Sensor

e 1xled

e 1x 330 ohm resistor

@' tutorialspoint 171

EIMPLYEAEYLEARMNINEG

Arduino

Procedure

Follow the circuit diagram and hook up the components on the breadboard as shown in
the image given below.

ARD1

NI DOTVNY
(Wmd~) TvLIDIa

ARDUINO UNC R3

<TEXT=>
water sensor

sensor output = zero volt when detect water

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking on New.

2 et JasdTa | hediing 144 LIV = T sherch janbic | atdunc L 04 T
Fhe! Edt Seach Took Help Fde [da Shetch Took Melp
e conen a ©0 BED

Open.. Code O

Shetchbook ’ 2 e
Exarmples . s

Close Core'

e Cote s

Sove As.. CodeShin.5

Upload Ciet)

Upload Lhing Programeser Ciole Shits U

Page Sevup Coe St » -
Proe Ctrde®

Preferences Crde Comma

Qua e Q

'@j tutorialspoint 172

Arduino

Arduino Code

#tdefine Grove_Water_Sensor 8 // Attach Water sensor to Arduino Digital Pin 8
#tdefine LED 9 // Attach an LED to Digital Pin 9 (or use onboard LED)

void setup()

{
pinMode(Grove_Water_Sensor, INPUT); // The Water Sensor is an Input
pinMode(LED, OUTPUT); // The LED is an Output
¥
void loop()
{
/* The water sensor will switch LOW when water is detected.
Get the Arduino to illuminate the LED and activate the buzzer
when water is detected, and switch both off when no water is present
*/
if(digitalRead(Grove_Water_Sensor) == LOW)
{
digitalWrite(LED,HIGH);
}
else
{
digitalWrite(LED,LOW);
}
}

Code to Note

Water sensor has three terminals - S, Vout(+), and GND (-). Connect the sensor as
follows:

e Connect the +Vs to +5v on your Arduino board.

e Connect S to digital pin number 8 on Arduino board.

e Connect GND with GND on Arduino.

e Connect LED to digital pin number 9 in Arduino board.

When the sensor detects water, pin 8 on Arduino becomes LOW and then the LED on
Arduino is turned ON.

Result

You will see the indication LED turn ON when the sensor detects water.

'&j \tutorialspoint 173

EIMPLYEAEYLEARMNINEG

38. Arduino — PIR Sensor

PIR sensors allow you to sense motion. They are used to detect whether a human has
moved in or out of the sensor’s range. They are commonly found in appliances and gadgets
used at home or for businesses. They are often referred to as PIR, "Passive Infrared",
"Pyroelectric", or "IR motion" sensors.

Following are the advantages of PIR Sensors -

e Smallin size

e Wide lens range
e Easy to interface
¢ Inexpensive

e Low-power

e FEasy to use

e Do not wear out

PIRs are made of pyroelectric sensors, a round metal can with a rectangular crystal in the
center, which can detect levels of infrared radiation. Everything emits low-level radiation,
and the hotter something is, the more radiation is emitted. The sensor in a motion detector
is split in two halves. This is to detect motion (change) and not average IR levels. The two
halves are connected so that they cancel out each other. If one-half sees more or less IR
radiation than the other, the output will swing high or low.

@' tutorialspoint 174

EIMPLYEAEYLEARMNINEG

Arduino

PIRs have adjustable settings and have a header installed in the 3-pin ground/out/power
pads.

Delay Time Adjust Sensitivity Adjust
Retrigger \1 /
Setting B o
Jumper T l: -
IS,
u 2 1
BISS0001 b A ive
PIR Chip ety

Rz

3vDC
Regulator

Protection Diode

Ground Digital OUT " 3.5vypC Power

For many basic projects or products that need to detect when a person has left or entered
the area, PIR sensors are great. Note that PIRs do not tell you the number of people
around or their closeness to the sensor. The lens is often fixed to a certain sweep at a
distance and they are sometimes set off by the pets in the house.

Components Required

You will need the following components:
e 1x Breadboard
e 1x Arduino Uno R3
e 1x PIR Sensor (MQ3)

EIMPLYEAEYLEARMNINEG

@' ' tutorialspoint 175

Arduino

Procedure

Follow the circuit diagram and make the connections as shown in the image below.

ARD1

arduinoc 5 volt arduino ground

@ s - N
‘/
8 o y N
M 8 P B
2 @ £ \
» 0 a|g /' \
] a) { \
E a a3 |
R |
8ls il |
z 2 s g : i | /
@ 8|2 x \ 4
) - RX X 4
b J
ARDUINO UNO R3 A >
} www"lheErojects.com
PIR SENSOR INTERFACE TO ARDUINO UNO .
PIR1
PIR SENSOR2
TEXT>
Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

D shaeh JundTa | Reiing 104 L T sherch janbic | atdume L0 — i
el Bt Shech Took Help Fie [da Shesch Took Melp

New CraeN :;

Open.. Code O -

Sketchbook ' H

Erarrples .

Chose Cote' W

er Cites

Sove As... CreShines

Upload Cidel)

Upload Lhing Programeses Cide Shits U

Page Setup e S P)

Prve Cie®

Preference Code Comma

Que CaeQ

'@j tutorialspoint 176

Arduino Code

Arduino

#tdefine pirPin 2
int calibrationTime = 30;

long unsigned int lowln;
long unsigned int pause = 5000;
boolean lockLow = true;
boolean takelLowTime;
int PIRValue = 0;
void setup()
{
Serial.begin(9600);
pinMode(pirPin, INPUT);
}
void loop()
{

PIRSensor();

}
void PIRSensor()

{
if(digitalRead(pirPin) == HIGH)
{

if(lockLow)

{
PIRValue = 1;

lockLow = false;

delay(590);
}

takeLowTime = true;

}
if(digitalRead(pirPin) == LOW)

Serial.println("Motion detected.");

'&j \tutorialspoint

EIMPLYEAEYLEARMNINEG

177

Arduino

if(takeLowTime){lowIn = millis();takeLowTime = false;}

if(!lockLow & & millis() - lowIn > pause)

{
PIRValue = 0;
lockLow = true;
Serial.println("Motion ended.");
delay(590);
}

Code to Note
PIR sensor has three terminals - Vcc, OUT and GND. Connect the sensor as follows:
e Connect the +Vcc to +5v on Arduino board.

e Connect OUT to digital pin 2 on Arduino board.
e Connect GND with GND on Arduino.

You can adjust the sensor sensitivity and delay time via two variable resistors located at
the bottom of the sensor board.

Delay Time Adjust Sensitivity Adjust

Once the sensor detects any motion, Arduino will send a message via the serial port to
say that a motion is detected. The PIR sense motion will delay for certain time to check if
there is a new motion. If there is no motion detected, Arduino will send a new message
saying that the motion has ended.

Result

You will see a message on your serial port if a motion is detected and another message
when the motion stops.

|§J’ tutorialspoint 178

EIMPLYEAEYLEARMNINEG

39. Arduino — Ultrasonic Sensor

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an object just
like the bats do. It offers excellent non-contact range detection with high accuracy and
stable readings in an easy-to-use package from 2 cm to 400 cm or 1” to 13 feet.

The operation is not affected by sunlight or black material, although acoustically, soft
materials like cloth can be difficult to detect. It comes complete with ultrasonic transmitter
and receiver module.

‘r:!u:c!ed wave

[Sender/]>

Object
Receiver s

ona.nal wa\‘c'
i

astance r

Technical Specifications
e Power Supply:+5V DC
e Quiescent Current: <2mA
e Working Current: 15mA
o Effectual Angle: <15°
e Ranging Distance: 2cm - 400 cm/1” - 13ft

@' tutorialspoint 179

EIMPLYEAEYLEARMNINEG

Arduino

e Resolution: 0.3 cm

e Measuring Angle: 30 degree

Components Required

You will need the following components:

e 1x Breadboard
e 1x Arduino Uno R3
e 1x ULTRASONIC Sensor (HC-SR04)

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

SONAR1
ULTRASONIC SENSOR

www. ThoEngineedingProjoots. com

ARD1

)
ARDUING 5 VOLT

ARDUING GROUND

NI SOTVNY
(2 22222 12222 7
SSESEDEEEEEEED

(Mmd-) V11910

ARDUING UNO R3
TEXT

ULTRASONIC SENSOR INTERFACE TO ARDUINO UNO

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

'@J tutorialspoint 180

Arduino

2 dhateh _Jasdla | Aedsing 154 LRIV == T sherch jantic | atdunc L 04 [—T |
Tl Edt Seerch Took Help Fde (e Skesch Took Help

Hew CoaeN [,.:

Open.. Crde O

Shetrhbock i

Exarrples :

Close CoteW

e Cotes

Swve As... CrrteShin. &

Upiosd Credet

Upload Lhing Programeses Cile Shite U

Page Setup Cole S P o d

Pre Crde @

Prefeences Ce Comma

Que CeQ

Arduino Code

const int pingPin = 7; // Trigger Pin of Ultrasonic Sensor

const int echoPin 6; // Echo Pin of Ultrasonic Sensor

void setup()

{
Serial.begin(9600); // Starting Serial Terminal

}
void loop()

{

long duration, inches, cm;
pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HIGH);
delayMicroseconds(10);
digitalWrite(pingPin, LOW);
pinMode(echoPin, INPUT);

duration = pulseIn(echoPin, HIGH);

inches = microsecondsToInches(duration);
cm = microsecondsToCentimeters(duration);
Serial.print(inches);
Serial.print("in, ");

Serial.print(cm);

'@j Mtutorialspoint 181

EIMPLYEAEBEYLEARNING

Arduino

Serial.print("cm");
Serial.println();
delay(100);

}

long microsecondsToInches(long microseconds)

{

return microseconds / 74 / 2;

}

long microsecondsToCentimeters(long microseconds)

{

return microseconds / 29 / 2;

}

Code to Note

The Ultrasonic sensor has four terminals - +5V, Trigger, Echo, and GND connected as
follows:

e Connect the +5V pin to +5v on your Arduino board.

e Connect Trigger to digital pin 7 on your Arduino board.
e Connect Echo to digital pin 6 on your Arduino board.

¢ Connect GND with GND on Arduino.

In our program, we have displayed the distance measured by the sensor in inches and cm
via the serial port.

Result

You will see the distance measured by sensor in inches and cm on Arduino serial monitor.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 182

40. Arduino — Connecting Switch

Pushbuttons or switches connect two open terminals in a circuit. This example turns on
the LED on pin 2 when you press the pushbutton switch connected to pin 8.

Pull-down Resistor

Pull-down resistors are used in electronic logic circuits to ensure that inputs to Arduino
settle at expected logic levels if external devices are disconnected or are at high-
impedance. As nothing is connected to an input pin, it does not mean that it is a logical
zero. Pull down resistors are connected between the ground and the appropriate pin on
the device.

An example of a pull-down resistor in a digital circuit is shown in the following figure. A
pushbutton switch is connected between the supply voltage and a microcontroller pin. In
such a circuit, when the switch is closed, the micro-controller input is at a logical high
value, but when the switch is open, the pull-down resistor pulls the input voltage down to
the ground (logical zero value), preventing an undefined state at the input.

The pull-down resistor must have a larger resistance than the impedance of the logic
circuit, or else it might pull the voltage down too much and the input voltage at the pin
would remain at a constant logical low value, regardless of the switch position.

Voo

81
Switch

R1
4.7k

| GND

MCU

EIMPLYEAEYLEARMNINEG

@' ' tutorialspoint 183

Arduino

Components Required

You will need the following components:
e 1x Arduino UNO board
e 1x330 ohm resistor
e 1x 4.7K ohm resistor (pull down)
e 1x LED

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

ARD1 arduino 5 volt
L/
~

R1
4.7k
] a)
2 a pull down resistor
] a
] a
] a
[] i f|g .
> 2 E a a =— arduino ground
£ n g HE
e~ " a
o|=s ° =5 D1
-] a R2
= B a g 14}
8 a|= 330
] | LED-YELLOW
ARDUINO UNO R3
<TEXT> o= arduino ground

'@J tutorialspoint 184

Arduino

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking on New.

D shateh Jasd?a | hedsing 104
Fiel Edt Sherch Took Help

E =

New CoaeN :’;
Open._. Crd. O

Shetrhbook]
Ersrrples s
Chorse Cote' W

v Cotes

Sove As. CodeShin. S

Upioad Crde

Upload Uhing Programeses Cisds Shifts 1)

Page Setup Coe S e P

Pre Crde®

Preferences Code Comma

Qua CeQ

Arduino Code

T sherch jandic | atdunc L 04
Fie [da Shesch Tool Help

void setup()
{

// constants won't change.

const int buttonPin = 8;

const int ledPin = 2;

int buttonState = 0;

// set pin numbers:

// variables will change:

They're used here to

// the number of the pushbutton pin
// the number of the LED pin

// variable for reading the pushbutton status

// initialize the LED pin as an output:
pinMode(ledPin, OUTPUT);
// initialize the pushbutton pin as an input:
pinMode(buttonPin, INPUT);

}

void loop()

{
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);

'@j Mtutorialspoint 185

EIMPLYEAEBEYLEARNING

Arduino

// check if the pushbutton is pressed.
// if it is, the buttonState is HIGH:
if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH);
} else {
// turn LED off:
digitalWrite(ledPin, LOW);

Code to Note

When the switch is open, (pushbutton is not pressed), there is no connection between the
two terminals of the pushbutton, so the pin is connected to the ground (through the pull-
down resistor) and we read a LOW. When the switch is closed (pushbutton is pressed), it
makes a connection between its two terminals, connecting the pin to 5 volts, so that we
read a HIGH.

Result

LED is turned ON when the pushbutton is pressed and OFF when it is released.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 186

Arduino

Arduino — Motor Control

@tutor‘ialspoint 187

41. Arduino—-DC Motor

In this chapter, we will interface different types of motors with the Arduino board (UNO)
and show you how to connect the motor and drive it from your board.

There are three different type of motors -

¢ DC motor
e Servo motor

e Stepper motor

A DC motor (Direct Current motor) is the most common type of motor. DC motors normally
have just two leads, one positive and one negative. If you connect these two leads directly
to a battery, the motor will rotate. If you switch the leads, the motor will rotate in the

opposite direction.
.

Warning: Do not drive the motor directly from Arduino board pins. This may damage the
board. Use a driver Circuit or an IC.

We will divide this chapter into three parts-
e Just make your motor spin

e Control motor speed

e Control the direction of the spin of DC motor

Components Required
You will need the following components:

e 1x Arduino UNO board
e 1x PN2222 Transistor

@' tutorialspoint 188

EIMPLYEAEYLEARMNINEG

Arduino

e 1x Small 6V DC Motor
e 1x 1N4001 diode
e 1x 270 Q Resistor

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

10Ky

-~

R

24
T PWM O
PWM U

L I I N N L O L R I N N R N N N N N
L B B A
L B)

LEE R R A R N N R O I N N N N R DT N N R N R R N N R N R R A

AR AR AR A AR AR o

Precautions

Take the following precautions while making the connections.

e First, make sure that the transistor is connected in the right way. The flat side of
the transistor should face the Arduino board as shown in the arrangement.

e Second, the striped end of the diode should be towards the +5V power line
according to the arrangement shown in the image.

Spin ControlArduino Code

int motorPin = 3;
void setup()

{
pinMode(motorPin, OUTPUT);

|§J’ tutorialspoint 189

EIMPLYEAEYLEARMNINEG

Arduino

}
void loop()
{
digitalWrite(motorPin, HIGH);
}

Code to Note

The transistor acts like a switch, controlling the power to the motor. Arduino pin 3 is used
to turn the transistor on and off and is given the name 'motorPin' in the sketch.

Result

Motor will spin in full speed when the Arduino pin number 3 goes high.

Motor Speed Control

Following is the schematic diagram of a DC motor, connected to the Arduino board.

ARD1

DC MOTOR

arduino 5 voit
D1 \

1N4001
<TEXT>

]

Z

Q1
PN2222
STEXT>

NI DOTVYNV
(WMd~) TvLoia

ARDUINO UNO R3

<TEXT>

DC MOTOR INTERFACE TO ARDUINO UNO L

arduino ground

Arduino Code

int motorPin = 9;

void setup()

{
pinMode(motorPin, OUTPUT);
Serial.begin(9600);

while (! Serial);

MPLYEAEYLEARMNING

@ Mtutorialspoint 190

Arduino

Serial.println("Speed © to 255");
}
void loop()

{
if (Serial.available())

{

int speed = Serial.parselnt();

if (speed >= 0 && speed <= 255)

analogWrite(motorPin, speed);

Code to Note

The transistor acts like a switch, controlling the power of the motor. Arduino pin 3 is used
to turn the transistor on and off and is given the name 'motorPin' in the sketch.

When the program starts, it prompts you to give the values to control the speed of the
motor. You need to enter a value between 0 and 255 in the Serial Monitor.

20 COM4 =13

200 | Send |

Virtual Terminal 7]

Speed 0 to 255 "

v

Iv] Autoscrob Nobreending v (9500baud v

In the 'loop' function, the command 'Serial.parselnt' is used to read the number entered
as text in the Serial Monitor and convert it into an 'int'. You can type any number here.
The 'if' statement in the next line simply does an analog write with this humber, if the
number is between 0 and 255.

Result

The DC motor will spin with different speeds according to the value (0 to 250) received
via the serial port.

191

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint

Arduino

Spin Direction Control

To control the direction of the spin of DC motor, without interchanging the leads, you can
use a circuit called an H-Bridge. An H-bridge is an electronic circuit that can drive the
motor in both directions. H-bridges are used in many different applications. One of the
most common application is to control motors in robots. It is called an H-bridge because
it uses four transistors connected in such a way that the schematic diagram looks like an
"H."

We will be using the L298 H-Bridge IC here. The L298 can control the speed and direction
of DC motors and stepper motors, and can control two motors simultaneously. Its current
rating is 2A for each motor. At these currents, however, you will need to use heat sinks.

NS
/ | s = cumensonsnes

Ll I— T
$ nf—> ourut3
P} — T
w3 owmEs
0t U3
) $—— LOGICSUPPLY VOLTAGE Veg
plultivattts —, F——— o
TE— 3 seun2
6 ———> ENABLEA
s—> weut
A SUPPLYVDLTAGEV;

@ Y — T 1) &)
1 ——— outpuTt
N\

(I CURRENT SENSING A

Z TAB CONNECTED TOPNS

Components Required

You will need the following components:
e 1 xL298 bridge IC
¢ 1 x DC motor
e 1 x Arduino UNO

1 x breadboard

e 10 x jumper wires

EIMPLYEAEBEYLEARNING

@ Mtutorialspoint 192

Arduino

Procedure

Following is the schematic diagram of the DC motor interface to Arduino Uno board.

ARD1

A srduino 5 voit

NI DOTVNV

SENSB GND
DC MOTOR
8 1208

ARDUINO UNO R3 |

<TEXTS

arduino ground
DC MOTOR INTERFACE TO ARDUINO UNO

The above diagram shows how to connect the L298 IC to control two motors. There are
three input pins for each motor, Inputl (IN1), Input2 (IN2), and Enablel (EN1) for Motorl
and Input3, Input4, and Enable2 for Motor2.

= w1 vee vs >

= a IN2 ouTY
" al. 10

2| e 3
& [B e ouT2
9 p- (Rl | 13
o a —— ENB ouT3 [—=
a &
[a L] sensa outs £
- . 15
o a
= a
] a
= a
] a
M a

(Wmd~) 1vioia

Since we will be controlling only one motor in this example, we will connect the Arduino
to IN1 (pin 5), IN2 (pin 7), and Enablel (pin 6) of the L298 IC. Pins 5 and 7 are digital,
i.e. ON or OFF inputs, while pin 6 needs a pulse-width modulated (PWM) signal to control
the motor speed.

The following table shows which direction the motor will turn based on the digital values
of IN1 and IN2.

IN1 IN2 Motor Behavior
BRAKE
1 FORWARD
1 BACKWARD
1 1 BRAKE

Pin IN1 of the IC L298 is connected to pin 8 of Arduino while IN2 is connected to pin 9.
These two digital pins of Arduino control the direction of the motor. The EN A pin of IC is
connected to the PWM pin 2 of Arduino. This will control the speed of the motor.

To set the values of Arduino pins 8 and 9, we have used the digitalWrite() function, and
to set the value of pin 2, we have to use the analogWrite() function.

MPLYEAEYLEARMNING

@ Mtutorialspoint 193

Arduino

Connection Steps
e Connect 5V and the ground of the IC to 5V and the ground of Arduino, respectively.

Connect the motor to pins 2 and 3 of the IC.
e Connect IN1 of the IC to pin 8 of Arduino.

e Connect IN2 of the IC to pin 9 of Arduino.

e Connect EN1 of IC to pin 2 of Arduino.

e Connect SENS A pin of IC to the ground.

e Connect Arduino using Arduino USB cable and upload the program to Arduino using
Arduino IDE software.

e Provide power to Arduino board using power supply, battery, or USB cable.

Arduino Code

const int pwm = 2 ; //initializing pin 2 as pwm
const int in_1 = 8 ;
const int in_2 = 9 ;

//For providing logic to L298 IC to choose the direction of the DC motor
void setup()

{

pinMode (pwm,OUTPUT) ; //we have to set PWM pin as output
pinMode(in_1,0UTPUT) ; //Logic pins are also set as output
pinMode(in_2,0UTPUT) ;

}

void loop()

{

//For Clock wise motion , in_1 = High , in_2 = Low
digitalWrite(in_1,HIGH) ;

digitalWrite(in_2,LO0W) ;

analogWrite(pwm,255) ;

/* setting pwm of the motor to 255 we can change the speed of rotation
by changing pwm input but we are only using arduino so we are using highest

value to driver the motor */

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 194

Arduino

//Clockwise for 3 secs
delay(3000) ;
//For brake
digitalWrite(in_1,HIGH) ;
digitalWrite(in_2,HIGH) ;
delay(1000) ;
//For Anti Clock-wise motion - IN_1 = LOW , IN_2 = HIGH
digitalWrite(in_1,LO0W) ;
digitalWrite(in_2,HIGH) ;
delay(3000) ;
//For brake
digitalWrite(in_1,HIGH) ;
digitalWrite(in_2,HIGH) ;
delay(1000) ;

}

Result

The motor will run first in the clockwise (CW) direction for 3 seconds and then counter-
clockwise (CCW) for 3 seconds.

'&j \tutorialspoint 195

EIMPLYEAEYLEARMNINEG

42. Arduino — Servo Motor

A Servo Motor is a small device that has an output shaft. This shaft can be positioned to
specific angular positions by sending the servo a coded signal. As long as the coded signal
exists on the input line, the servo will maintain the angular position of the shaft. If the
coded signal changes, the angular position of the shaft changes. In practice, servos are
used in radio-controlled airplanes to position control surfaces like the elevators and
rudders. They are also used in radio-controlled cars, puppets, and of course, robots.

Servos are extremely useful in robotics. The motors are small, have built-in control
circuitry, and are extremely powerful for their size. A standard servo such as the Futaba
S-148 has 42 oz/inches of torque, which is strong for its size. It also draws power
proportional to the mechanical load. A lightly loaded servo, therefore, does not consume
much energy.

The guts of a servo motor is shown in the following picture. You can see the control
circuitry, the motor, a set of gears, and the case. You can also see the 3 wires that connect
to the outside world. One is for power (+5volts), ground, and the white wire is the control
wire.

@' tutorialspoint 196

EIMPLYEAEYLEARMNINEG

Arduino

Working of a Servo Motor

The servo motor has some control circuits and a potentiometer (a variable resistor, aka
pot) connected to the output shaft. In the picture above, the pot can be seen on the right
side of the circuit board. This pot allows the control circuitry to monitor the current angle
of the servo motor.

If the shaft is at the correct angle, then the motor shuts off. If the circuit finds that the
angle is not correct, it will turn the motor until it is at a desired angle. The output shaft of
the servo is capable of traveling somewhere around 180 degrees. Usually, it is somewhere
in the 210-degree range, however, it varies depending on the manufacturer. A normal
servo is used to control an angular motion of 0 to 180 degrees. It is mechanically not
capable of turning any farther due to a mechanical stop built on to the main output gear.

The power applied to the motor is proportional to the distance it needs to travel. So, if the
shaft needs to turn a large distance, the motor will run at full speed. If it needs to turn
only a small amount, the motor will run at a slower speed. This is called proportional
control.

How Do You Communicate the Angle at Which the Servo Should Turn?

The control wire is used to communicate the angle. The angle is determined by the duration
of a pulse that is applied to the control wire. This is called Pulse Coded Modulation. The
servo expects to see a pulse every 20 milliseconds (.02 seconds). The length of the pulse
will determine how far the motor turns. A 1.5 millisecond pulse, for example, will make
the motor turn to the 90-degree position (often called as the neutral position). If the pulse
is shorter than 1.5 milliseconds, then the motor will turn the shaft closer to 0 degrees. If
the pulse is longer than 1.5 milliseconds, the shaft turns closer to 180 degrees.

1

il 1.50 ms: Neutral
S & 3§ &

1

5 1.25 ms: O degrees
= ¥ § 3

0 1.75 ms: 180 degrees i,
= § 5 3

Components Required
You will need the following components:

e 1x Arduino UNO board

e 1x Servo Motor

MPLYEAEYLEARMNING

@ Mtutorialspoint 197

Arduino

e 1x ULN2003 driving IC
e 1x 10 KQ Resistor

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

ARD1 wrduing 8 volt / battary
N
H
U1

oM f—
— 16— =
— 2n 2 |2
i 30 36 p—it O
—4 1 4o f—2 &2
—] 8@ 86 f—ia
~2— on oG =t
-] ¥ |0

[=i]
e
ULN2003A SERVO MOTOR
P
DRIVING IC

YOU NEED TO CONNECT THE 10 GROUND MN TO THE ARDUING GROUND

ARDUING UNO R3 ardulng B volt
L i\
SERVO MOTOR INTERFACE TO ARDUINO UNO
o RV1
H 10k
o

-n:lulr‘m ground

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking on New.

Crte Comma

CeQ

2 shatth JanlTa | Redtcing 104 I = T sherch jantic | ardune L 04 = '—‘"V.E
Fhel Edt Seach Took Help Fde (da Skesch Took Help

Mew CoaeN D |

Open_ Code O

Sketchbook . o

Easrrples . :

Close Cote'W

e Cotes

v As. CreShine &

Uplosd Crdets

Upload Lhing Programeses Clfs Shift U

Page Setvp Cote S+ P =

Prie Cede?

EIMPLYEAEBEYLEARNING

'@j Mtutorialspoint

198

Arduino

Arduino Code

/* Controlling a servo position using a potentiometer (variable resistor) */

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 9; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup()
{

myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop()
{

val = analogRead(potpin);

// reads the value of the potentiometer (value between © and 1023)

val = map(val, 0, 1023, 0, 180);
// scale it to use it with the servo (value between @ and 189)
myservo.write(val); // sets the servo position according to the scaled value

delay(15);

Code to Note

Servo motors have three terminals - power, ground, and signal. The power wire is typically
red, and should be connected to the 5V pin on the Arduino. The ground wire is typically
black or brown and should be connected to one terminal of ULN2003 IC (10 -16). To
protect your Arduino board from damage, you will heed some driver IC to do that. Here
we have used ULN2003 IC to drive the servo motor. The signal pin is typically yellow or
orange and should be connected to Arduino pin number 9.

'&j \tutorialspoint 199

EIMPLYEAEYLEARMNINEG

Arduino

Connecting the Potentiometer

A voltage divider/potential divider are resistors in a series circuit that scale the output
voltage to a particular ratio of the input voltage applied. Following is the circuit diagram -

,"
V in

R,
Vout
R,

Vout = (Vin X R2)/ (R1 + R2)

Vout is the output potential, which depends on the applied input voltage (Vin) and resistors
(R1and R2) in the series. It means that the current flowing through Ri1 will also flow through
R> without being divided. In the above equation, as the value of R2 changes, the Vout scales
accordingly with respect to the input voltage, Vin.

Typically, a potentiometer is a potential divider, which can scale the output voltage of the
circuit based on the value of the variable resistor, which is scaled using the knob. It has
three pins: GND, Signal, and +5V as shown in the diagram below -

Result

By changing the pot’s NOP position, servo motor will change its angle.

MPLYEAEYLEARMNING

@ Mtutorialspoint 200

43. Arduino — Stepper Motor

A Stepper Motor or a step motor is a brushless, synchronous motor, which divides a full
rotation into a number of steps. Unlike a brushless DC motor, which rotates continuously
when a fixed DC voltage is applied to it, a step motor rotates in discrete step angles.

The Stepper Motors therefore are manufactured with steps per revolution of 12, 24, 72,
144, 180, and 200, resulting in stepping angles of 30, 15, 5, 2.5, 2, and 1.8 degrees per
step. The stepper motor can be controlled with or without feedback.

Imagine a motor on an RC airplane. The motor spins very fast in one direction or another.
You can vary the speed with the amount of power given to the motor, but you cannot tell
the propeller to stop at a specific position.

Now imagine a printer. There are lots of moving parts inside a printer, including motors.
One such motor acts as the paper feed, spinning rollers that move the piece of paper as
ink is being printed on it. This motor needs to be able to move the paper an exact distance
to be able to print the next line of text or the next line of an image.

There is another motor attached to a threaded rod that moves the print head back and
forth. Again, that threaded rod needs to be moved an exact amount to print one letter
after another. This is where the stepper motors come in handy.

How a Stepper Motor Works?

A regular DC motor spins in only direction whereas a Stepper motor can spin in precise
increments.

Stepper motors can turn an exact amount of degrees (or steps) as desired. This gives you
total control over the motor, allowing you to move it to an exact location and hold that
position. It does so by powering the coils inside the motor for very short periods of time.
The disadvantage is that you have to power the motor all the time to keep it in the position
that you desire.

All you need to know for now is that, to move a stepper motor, you tell it to move a certain
number of steps in one direction or the other, and tell it the speed at which to step in that
direction. There are numerous varieties of stepper motors. The methods described here
can be used to infer how to use other motors and drivers which are not mentioned in this

@' tutorialspoint 201

EIMPLYEAEYLEARMNINEG

Arduino

tutorial. However, it is always recommended that you consult the datasheets and guides
of the motors and drivers specific to the models you have.

) . Rotor Poles
Bearing Housing l

Stator
Poles

Magnetic
Shafts

Stator Coils Shaft Bearing

Components Required
You will need the following components -
e 1x Arduino UNO board

e 1x small bipolar stepper Motor as shown in the image given below
e 1x LM298 driving IC

@' tutorialspoint 202

EIMPLYEAEYLEARMNINEG

Procedure

Arduino

Follow the circuit diagram and make the connections as shown in the image given below.

ARD1

NI DOTVNV
(Wmd-~) TvLIDIa

ARDUINO UNC R3

STEPPER MOTOR INTERFACE TO ARDUINO UNO

arduino ground

arduino 5 volt 12v battery
e 4 U1 BIPOLER STEPPER MOTOR
2 1mnt vee Vs
‘; N2 outt -2
e - —_(/Q_
8
L1 E:'; outa |12 I O
& &2/
[SENSA ouTs [—2 =
arduino 5 volt a SENSD SND [l
| 1268
8
DRIVING IC

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

2 shatch Jasd?a | Redaing 104 - m | T sherch jonbic | atdunc L 04 —‘“”E
Fie| Ede Seeuch Took Help Fde (e Shetch Took Help
New CoaeN rx
Lea
Open.. Code O
Shetchbook . 3
Exarmples . '
Clorse Cote' W
aer Cotes
Sove As. CeShin. 5
Upload Ctde
Upload Lhing Programeses Clods Shits U
Page Sevup Cote Shaly» P -
Proe Crde®
Preferences Crde Comma
Que CeQ
r A - " 203
tutnmalspomt
EIMPLYEAGSYLEARMNINEG

Arduino

Arduino Code

/* Stepper Motor Control */

#include <Stepper.h>

const int stepsPerRevolution = 90;

// change this to fit the number of steps per revolution
// for your motor

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {
// set the speed at 60 rpm:
myStepper.setSpeed(5);
// initialize the serial port:
Serial.begin(9600);

}

void loop() {
// step one revolution in one direction:
Serial.println("clockwise");
myStepper.step(stepsPerRevolution);
delay(500);
// step one revolution in the other direction:
Serial.println("counterclockwise");
myStepper.step(-stepsPerRevolution);
delay(500);

i3

Code to Note

This program drives a unipolar or bipolar stepper motor. The motor is attached to digital
pins 8 - 11 of Arduino.

Result

The motor will take one revolution in one direction, then one revolution in the other
direction.

'&j \tutorialspoint 204

EIMPLYEAEYLEARMNINEG

Arduino

Arduino and Sound

@tutor‘ialspoint 205

44. Arduino—Tone Library

In this chapter, we will use the Arduino Tone Library. It is nothing but an Arduino Library,
which produces square-wave of a specified frequency (and 50% duty cycle) on any Arduino
pin. A duration can optionally be specified, otherwise the wave continues until the stop()
function is called. The pin can be connected to a piezo buzzer or a speaker to play the
tones.

Warning: Do not connect the pin directly to any audio input. The voltage is considerably
higher than the standard line level voltages, and can damage sound card inputs, etc. You
can use a voltage divider to bring the voltage down.

You MUST have a resistor in line with the speaker, or you WILL damage the controller.

Components Required

You will need the following components -

e 1x 8-ohm speaker
e 1x 1k resistor
e 1x Arduino UNO board

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

8 ohm SPEAKER
ARD?

HISO0TVRY

ibgnd~) TPLISI0

ARDUING UNG R3

ot

SPEAKER INTERFACE TO ARDUINO UNO

@' tutorialspoint 206

EIMPLYEAEYLEARMNINEG

Arduino

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

D chateh jasdila | hestsing 184 R Y i D shetch Jonbic | Atdune § 0.6 o w5
Fiel Edt Seeuch Took Help Fae (da Shetch Took Help
New CoaeN . -
= = IS

Shetchbook ’

Exarmples . ¢
Chose Cotew

e Cotes

Sove As.. CodeShin. 5

Uplosd Cret)

Upload Lhing Programeses Ciele Shits)

Page Setup Cote S P p=
Pre Code®

Preferences Crde Comma

Qua CeQ

To make the pitches.h file, either click the button just below the serial monitor icon and
choose "New Tab", or use Ctrl+Shift+N.

New Tab Ctrl+Maiusc+N
Rename
Delete

|§J’ tutorialspoint 207

EIMPLYEAEYLEARMNINEG

Then paste the following code:

Arduino

/***

* Public Constants

***/

#define NOTE_Bo 31
#define NOTE_C1 33
#tdefine NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#tdefine NOTE_E1 41
#tdefine NOTE_F1 44
#define NOTE_FS1 46
#tdefine NOTE_G1 49
#tdefine NOTE_GS1 52
#tdefine NOTE_A1 55
#tdefine NOTE_AS1 58
#tdefine NOTE_B1 62
#tdefine NOTE_C2 65
#tdefine NOTE_CS2 69
#tdefine NOTE_D2 73
#define NOTE_DS2 78
#tdefine NOTE_E2 82
#tdefine NOTE_F2 87
#tdefine NOTE_FS2 93
#tdefine NOTE_G2 98
#tdefine NOTE_GS2 104
#define NOTE_A2 110
#tdefine NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#tdefine NOTE_CS3 139
#tdefine NOTE_D3 147

'@. \tutorialspoint

EIMPLYEAEYLEARMNINEG

208

Arduino

#define NOTE_DS3

#define NOTE_E3

#tdefine NOTE_F3

#define NOTE_FS3

#define NOTE_G3

#tdefine NOTE_GS3

#tdefine NOTE_A3

#define NOTE_AS3

#tdefine NOTE_B3

#define NOTE_C4

#tdefine NOTE_CS4

#tdefine NOTE_D4

#define NOTE_DS4

#tdefine NOTE_E4

#tdefine NOTE_F4

#define NOTE_FS4

#tdefine NOTE_G4

#tdefine NOTE_GS4

#define NOTE_A4

#tdefine NOTE_AS4

#define NOTE_B4

#define NOTE_C5

#define NOTE_CS5S

#define NOTE_D5

#define NOTE_DS5

#tdefine NOTE_ES

#define NOTE_F5

#define NOTE_FS5

#tdefine NOTE_G5

#define NOTE_GS5

#tdefine NOTE_AS

#tdefine NOTE_ASS

#define NOTE_BS5

#tdefine NOTE_C6

#tdefine NOTE_CS6

156
165
175
185
196
208
220
233
247
262
277
294
311
330
349
370
392
415
440
466
494
523
554
587
622
659
698
740
784
831
880
932
988
1047
1109

&

' tutorialspoint

EIMPLYEAEYLEARMIMN

G

209

Arduino

#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#tdefine NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#tdefine NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#tdefine NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#tdefine NOTE_D7 2349
#define NOTE_DS7 2489
#tdefine NOTE_E7 2637
#tdefine NOTE_F7 2794
#define NOTE_FS7 2960
#tdefine NOTE_G7 3136
#tdefine NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

Save the above given code as pitches.h

Arduino Code

#include "pitches.h"

// notes in the melody:

int melody[] = {

NOTE_C4, NOTE_G3,NOTE_G3, NOTE_GS3, NOTE_G3,0, NOTE_B3, NOTE_C4};
// note durations: 4 = quarter note, 8 = eighth note, etc.:

int noteDurations[] = {

4, 8, 8, 4,4,4,4,4 };

'@.. tutorialspoint 210

EIMPLYEAEYLEARMNINEG

Arduino

void setup() {
// iterate over the notes of the melody:
for (int thisNote = ©; thisNote < 8; thisNote++) {

// to calculate the note duration, take one second

// divided by the note type.

//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 1000/noteDurations[thisNote];
tone(8, melody[thisNote],noteDuration);

//pause for the note's duration plus 30 ms:

delay(noteDuration +30);

}
}
void loop()
{
// no need to repeat the melody.
}

Code to Note

The code uses an extra file, pitches.h. This file contains all the pitch values for typical
notes. For example, NOTE_C4 is middle C. NOTE_FS4 is F sharp, and so forth. This note
table was originally written by Brett Hagman, on whose work the tone() command was
based. You may find it useful whenever you want to make musical notes.

Result

You will hear musical notes saved in the pitches.h. file.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 211

45. Arduino — Wireless Communication

The wireless transmitter and receiver modules work at 315 Mhz. They can easily fit into a
breadboard and work well with microcontrollers to create a very simple wireless data link.
With one pair of transmitter and receiver, the modules will only work communicating data
one-way, however, you would need two pairs (of different frequencies) to act as a
transmitter/receiver pair.

Note: These modules are indiscriminate and receive a fair amount of noise. Both the
transmitter and receiver work at common frequencies and do not have IDs.

Receiver Module Specifications
e Product Model: MX-05V
e Operating voltage: DC5V
e Quiescent Current: 4mA
e Receiving frequency: 315Mhz
e Receiver sensitivity: -105DB
e Size: 30 * 14 * 7mm

Transmitter Module Specifications
e Product Model: MX-FS-03V
e Launch distance: 20-200 meters (different voltage, different results)
e Operating voltage: 3.5-12V
e Dimensions: 19 * 19mm
e Operating mode: AM
e Transfer rate: 4KB/ S
e Transmitting power: 10mW

e Transmitting frequency: 315Mhz

@' tutorialspoint 212

EIMPLYEAEYLEARMNINEG

Arduino

e An external antenna: 25cm ordinary multi-core or single-core line
e Pinout from left — right: (DATA; VCC; GND)

Components Required

You will need the following components-
e 2X Arduino UNO board
e 1x Rflink transmitter

e 1x Rf link receiver

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

. 2

NOOLLO T

RF Transmitter

MO0 TYNY

NIDO ony
SrocowUSTUBONED
(YT YT Y PTYY YY)

ARDURE) WO RS

ARDUNC 1O RS

WIRELESS COMMUNICATION USING RF MODULE AND ARDUING UNO

Sketch

Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit. Open a new sketch File by clicking New.

'@j tutorialspoint 213

Arduino

Upload Uhing Programeses Cists Shits U

Page Setup Cole Shat« P
Prre Crre?
Preferences Code Comma
Que Qe Q

2 dhateh Jasdi? | Redsing 104 |y
el gt Swech Took Help

HNew CoaeN

Open_. Code O

Sketchbook .

Exarmples .

Close Cote W

e Cites

Sove As.. CodeShin. 5

Upload Ciett

e TS shesch Jondac | Arthamo L 106

(=)

Fde (da Shesch Took Melp

Note: You must include the keypad library in your Arduino library file. Copy and paste the
VirtualWire.lib file in the libraries folder as highlighted in the screenshot given below.

. Information Technolgy (Gi)
[[i] DVD RW Drive (H:) MIKROE
¢4 CD Drive (L)

S Network

Qrganize = Include in library » Share with = Burn
{ Favorites b
M Desktop erlvery
& Downloads exampley
4 Recent Places harcware
L3 Dropbox java
lib
v Libraries libraries
| #] Documents reference
o Music tools
|l Plctures @ arduino
B videcs @D arduino_debug
%] cygiconv-2.dll
W Computer %] eygwind.cll
& Local Disk (C:) [libuszh0,dll
o MTC MASTER (D:) | revisions
. Information Technolgy (2) (E1) %) rxtxSerial.dil
o My SW prog (F:) W7 uninstall

@\ /v| » Computer » Local Disk (C:) » Program Files » Arduine »

New folder
Date mocdifiet

03/08/2015 07
03/08/201507:33
02/10/201503;20
03/08/2015 07:34
03/08/2015 07,34
L8/10/2015 07:52 ..,
03/08/2015 0734
03/08/2015 07:34
16/09/2014 03:14¢
6/09/2014 03:46

6/09/2014 03:4¢

1
1
16/09/2014 0346
16/00/2014 0346
16/08/2014 03:46
16/09/2014 03:46

03/08/2015 07,3

File fal

File folder

File folder

File folder

File folder

File folder

File folder

File folder

Appli

Applic

App

Applic

Appli

Toxt Doc

Appll
Appll

ation
ation
ation extens.,

ation exten

ition extern

umaent

ation exten

here
find A
b

344 KE
83 KI

1 829 K
43 KB
19 KB
6 KH

402 KB

Vau can

rauino
file

Arduino Code for Transmitter

//simple Tx on pin D12

#include <VirtualWire.h>

char *controller;

void setup() {
pinMode(13,0UTPUT);

'@J Mtutorialspoint

EIMPLYEAEYLEARMNINEG

214

Arduino

vw_set ptt inverted(true);
vw_set_tx_pin(12);
vw_setup(4000);// speed of data transfer Kbps

}
void loop()

{

controller="1" ;

vw_send((uint8_t *)controller, strlen(controller));
vw_wait_tx(); // Wait until the whole message is gone
digitalWrite(13,1);

delay(2000);

controller="0" ;

vw_send((uint8_t *)controller, strlen(controller));
vw_wait_tx(); // Wait until the whole message is gone
digitalWrite(13,0);

delay(2000);

}

Code to Note

This is a simple code. First, it will send character '1' and after two seconds it will send
character '0' and so on.

Arduino Code for Receiver

//simple Rx on pin D12
#tinclude <VirtualWire.h>

void setup()

{
vw_set_ptt_inverted(true); // Required for DR3100
vw_set_rx_pin(12);
vw_setup(4000); // Bits per sec
pinMode(5, OUTPUT);
vw_rx_start(); // Start the receiver PLL running
}
void loop()
{

uint8_t buf[VW_MAX_MESSAGE_LEN];

'&j \tutorialspoint 215

EIMPLYEAEYLEARMNINEG

Arduino

uint8 t buflen = VW_MAX_MESSAGE_LEN;
if (vw_get_message(buf, &buflen)) // Non-blocking
{
if(buf[@]=="1"){
digitalWrite(5,1);
}
if(buf[@]=="0"){
digitallWrite(5,0);
}

Code to Note

The LED connected to pin number 5 on the Arduino board is turned ON when character '1'
is received and turned OFF when character '0' received.

EIMPLYEAEYLEARMNINEG

'&j \tutorialspoint 216

46. Arduino — Network Communication

The CC3000 WiFi module from Texas Instruments is a small silver package, which finally
brings easy-to-use, affordable WiFi functionality to your Arduino projects.

It uses SPI for communication (not UART!) so you can push data as fast as you want or
as slow as you want. It has a proper interrupt system with IRQ pin so you can have
asynchronous connections. It supports 802.11b/g, open/WEP/WPA/WPA2 security, TKIP &
AES. A built-in TCP/IP stack with a "BSD socket" interface supports TCP and UDP in both
the client and the server mode.

Components Required

You will need the following components:

e 1xArduino Uno

e 1x Adafruit CC3000 breakout board
e 1x5V relay

e 1xRectifier diode

e 1X LED

e 1X220 Ohm resistor

e 1xBreadboard and some jumper wires

For this project, you just need the usual Arduino IDE, the Adafruit’s CC3000 library, and
the CC3000 MDNS library. We are also going to use the aREST library to send commands
to the relay via WiFi.

@' tutorialspoint 217

EIMPLYEAEYLEARMNINEG

Arduino

Procedure

Follow the circuit diagram and make the connections as shown in the image given below.

|

LR e LR

R R LR N S e e LR
1c Pyt - xRN

===l it i

- ¢ v ¢ D L B
oN
axmm Arduino” ® NN e

g v e v 00 = ‘.

R ,\ g.;.;.;'][:.:.:.:.:. .:.:.: o5 Vyses

L L

L .
[}
I
¥
L .
L .

The hardware configuration for this project is very easy.

e Connect the IRQ pin of the CC3000 board to pin humber 3 of the Arduino board.
e VBAT to pin 5, and CS to pin 10.

e Connect the SPI pins to Arduino board: MOSI, MISO, and CLK to pins 11, 12, and
13, respectively.

e Vinis connected to Arduino 5V, and GND to GND.

Let us now connect the relay.

After placing the relay on the breadboard, you can start identifying the two important parts
on your relay: the coil part which commands the relay, and the switch part where we will
attach the LED.

e First, connect pin number 8 of Arduino board to one pin of the coil.
e Connect the other pin to the ground of Arduino board.

You also have to place the rectifier diode (anode connected to the ground pin) over the
pins of the coil to protect your circuit when the relay is switching.

e Connect the +5V of Arduino board to the common pin of the relay’s switch.

'@J tutorialspoint 218

Arduino

e Finally, connect one of the other pin of the switch (usually, the one which is not
connected when the relay is off) to the LED in series with the 220 Ohm resistor,
and connect the other side of the LED to the ground of Arduino board.

Testing Individual Components

You can test the relay with the following sketch:

const int relay_pin = 8; // Relay pin
void setup()
{
Serial.begin(9600);
pinMode(relay_pin,OUTPUT);

}
void loop()

{

// Activate relay
digitalWrite(relay_pin, HIGH);
// Wait for 1 second
delay(1000);

// Deactivate relay
digitalWrite(relay_pin, LOW);
// Wait for 1 second
delay(1000);

Code to Note

The code is self-explanatory. You can just upload it to the board and the relay will switch
states every second, and the LED will switch ON and OFF accordingly.

Adding WiFi Connectivity

Let us now control the relay wirelessly using the CC3000 WiFi chip. The software for this
project is based on the TCP protocol. However, for this project, Arduino board will be
running a small web server, so we can "“listen” for commands coming from the computer.
We will first take care of Arduino sketch, and then we will see how to write the server-side
code and create a nice interface.

First, the Arduino sketch. The goal here is to connect to your WiFi network, create a web
server, check if there are incoming TCP connections, and then change the state of the
relay accordingly.

EIMPLYEAEYLEARMNINEG

'&j. tutorialspoint 219

Arduino

Important Parts of the Code

#include <Adafruit_CC3000.h>
#include <SPI.h>
#include <CC3000_MDNS.h>
#include <Ethernet.h>

#include <aREST.h>

You need to define inside the code what is specific to your configuration, i.e. Wi-Fi name
and password, and the port for TCP communications (we have used 80 here).

// WiFi network (change with your settings!)
#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#tdefine WLAN_PASS "yourPassword"

#define WLAN_SECURITY WLAN_SEC_WPA2 // This can be WLAN_SEC_UNSEC,
WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2

// The port to listen for incoming TCP connections

#define LISTEN_PORT 80

We can then create the CC3000 instance, server and aREST instance:

// Server instance
Adafruit_CC3000_Server restServer(LISTEN_PORT); // DNS responder instance
MDNSResponder mdns; // Create aREST instance
aREST rest = aREST();

In the setup() part of the sketch, we can now connect the CC3000 chip to the network:

€c3000.connectToAP (WLAN_SSID, WLAN_PASS, WLAN_SECURITY);

How will the computer know where to send the data? One way would be to run the sketch
once, then get the IP address of the CC3000 board, and modify the server code again.
However, we can do better, and that is where the CC3000 MDNS library comes into play.
We will assign a fixed name to our CC3000 board with this library, so we can write down
this name directly into the server code.

This is done with the following piece of code:

if (!mdns.begin("arduino", cc3000))

{
while(1);

'&j \tutorialspoint 220

EIMPLYEAEYLEARMNINEG

Arduino

We also need to listen for incoming connections.

restServer.begin();

Next, we will code the loop() function of the sketch that will be continuously executed. We
first have to update the mDNS server.

mdns.update();

The server running on Arduino board will wait for the incoming connections and handle
the requests.

Adafruit_CC3000 ClientRef client = restServer.available();
rest.handle(client);

It is now quite easy to test the projects via WiFi. Make sure you updated the sketch with
your own WiFi name and password, and upload the sketch to your Arduino board. Open
your Arduino IDE serial monitor, and look for the IP address of your board.

Let us assume for the rest here that it is something like 192.168.1.103.
Then, simply go to your favorite web browser, and type:
192.168.1.103/digital/8/1

You should see that your relay automatically turns ON.

Building the Relay Interface

We will now code the interface of the project. There will be two parts here: an HTML file
containing the interface, and a client-side Javascript file to handle the clicks on the
interface. The interface here is based on the aREST.js project, which was made to easily
control WiFi devices from your computer.

Let us first see the HTML file, called interface.html. The first part consists importing all the
required libraries for the interface:

<head>
<meta charset=utf-8 />
<title> Relay Control </title>

<link rel="stylesheet" type="text/css"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css">

<link rel="stylesheet" type="text/css" href="style.css">

<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.4.min.js"></script>

<script type="text/javascript"
src="https://cdn.rawgit.com/Foliotek/AjaxQ/master/ajaxq.js"></script>

<script type="text/javascript"
src="https://cdn.rawgit.com/marcoschwartz/aREST.js/master/aREST.js" ></script>

<script type="text/javascript" src="script.js"></script>

'&j \tutorialspoint 221

EIMPLYEAEYLEARMNINEG

Arduino

</head>

Then, we define two buttons inside the interface, one to turn the relay on, and the other
to turn it off again.

<div class='container'>
<h1>Relay Control</hl>
<div class='row'>
<div class="col-md-1">Relay</div>
<div class="col-md-2">
<button id='on' class='btn btn-block btn-success'>0On</button>
</div>
<div class="col-md-2">
<button id='off' class='btn btn-block btn-danger'>0On</button>
</div>
</div>

</div>

Now, we also need a client-side Javascript file to handle the clicks on the buttons. We will
also create a device that we will link to the mDNS name of our Arduino device. If you
changed this in Arduino code, you will need to modify it here as well.

// Create device

var device = new Device("arduino.local");

// Button

$('#on').click(function() {
device.digitalWrite(8, 1);

})s

$("#off').click(function() {
device.digitalWrite(8, 0);

})s

The complete code for this project can be found on the GitHub repository. Go into the
interface folder, and simply open the HTML file with your favorite browser. You should see
something similar inside your browser:

'&j \tutorialspoint 222

EIMPLYEAEYLEARMNINEG

Arduino

Relay Control

Try to click a button on the web interface; it should change the state of the relay nearly
instantly.

If you managed to get it working, bravo! You just built a Wi-Fi-controlled light switch. Of
course, you can control much more than lights with this project. Just make sure your relay
supports the power required for the device you want to control, and you are good to go.

@' tutorialspoint 223

EIMPLYEAEYLEARMNINEG

